Electronic Communications in Probability

Berry-Esseen bounds in the Breuer-Major CLT and Gebelein’s inequality

Ivan Nourdin, Giovanni Peccati, and Xiaochuan Yang

Full-text: Open access


We derive explicit Berry-Esseen bounds in the total variation distance for the Breuer-Major central limit theorem, in the case of a subordinating function $\varphi $ satisfying minimal regularity assumptions. Our approach is based on the combination of the Malliavin-Stein approach for normal approximations with Gebelein’s inequality, bounding the covariance of functionals of Gaussian fields in terms of maximal correlation coefficients.

Article information

Electron. Commun. Probab., Volume 24 (2019), paper no. 34, 12 pp.

Received: 10 February 2019
Accepted: 10 May 2019
First available in Project Euclid: 22 June 2019

Permanent link to this document

Digital Object Identifier

Primary: 60F05: Central limit and other weak theorems 60G15: Gaussian processes 60H07: Stochastic calculus of variations and the Malliavin calculus

Breuer-Major theorem rate of convergence Gebelein’s inequality Malliavin-Stein approach

Creative Commons Attribution 4.0 International License.


Nourdin, Ivan; Peccati, Giovanni; Yang, Xiaochuan. Berry-Esseen bounds in the Breuer-Major CLT and Gebelein’s inequality. Electron. Commun. Probab. 24 (2019), paper no. 34, 12 pp. doi:10.1214/19-ECP241. https://projecteuclid.org/euclid.ecp/1561169050

Export citation


  • [1] A.D. Barbour and P. Hall (1984): Reversing the Berry-Esseen inequality Proceedings of the American Mathematical Society, 90(1), pp. 107–110.
  • [2] P. Breuer and P. Major (1983): Central limit theorems for nonlinear functionals of Gaussian fields. J. Multivariate Anal. 13, no. 3, pp. 425–441.
  • [3] S. Campese, I. Nourdin and D. Nualart (2018): Continuous Breuer-Major theorem: tightness and non-stationarity. To appear in Annals of Probability.
  • [4] D. Chambers and E. Slud (1989): Central limit theorems for nonlinear functionals of stationary Gaussian processes. Probab. Theory Related Fields 80, no. 3, pp. 323–346.
  • [5] P. Doukhan (2018): Stochastic Models for Time Series. Springer, 308 pages.
  • [6] H. Gebelein (1941): Das statistische Problem der Korrelation als Variations- und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung. Z. Angew. Math. Mech. 21, pp. 364–379.
  • [7] Y. Hu and D. Nualart (2010): Parameter estimation for fractional Ornstein-Uhlenbeck processes. Statist. Probab. Lett. 80, no. 11-12, pp. 1030–1038.
  • [8] A. Jaramillo and D. Nualart (2017): Asymptotic properties of the derivative of self-intersection local time of fractional Brownian motion. Stochastic Process. Appl. 127, no. 2, pp. 669–700.
  • [9] S. Kunzun and D. Nualart (2019): Rate of convergence in the Breuer-Major theorem via chaos expansions. Preprint.
  • [10] I. Nourdin (2012): Lectures on Gaussian approximations with Malliavin calculus. Sém. Probab. XLV, pp. 3–89.
  • [11] I. Nourdin and D. Nualart (2018): The functional Breuer-Major theorem. To appear in Probab Theory Related Fields.
  • [12] I. Nourdin and G. Peccati (2012): Normal Approximations with Malliavin calculus. From Stein’s Method to Universality. Cambridge Tracts in Mathematics, 192. Cambridge University Press, Cambridge. xiv+239 pp.
  • [13] I. Nourdin and G. Peccati (2015): The optimal fourth moment theorem. Proc. Amer. Math. Soc. 143, no. 7, pp. 3123–3133.
  • [14] I. Nourdin, G. Peccati and M. Podolskij (2011): Quantitative Breuer-Major theorems. Stochastic Process. Appl. 121, no. 4, pp. 793–812.
  • [15] I. Nourdin, G. Peccati and G. Reinert (2009): Second order Poincaré inequalities and CLTs on Wiener space. J. Funct. Anal. 257, pp. 593-609.
  • [16] I. Nourdin, G. Peccati and M. Rossi (2017): Nodal statistics of planar random waves. Preprint.
  • [17] I. Nourdin and G. Poly (2013): Convergence in total variation on Wiener chaos. Stoch. Proc. App., 123(2), 651-674.
  • [18] D. Nualart (2006): Malliavin Calculus and Related Topics. Springer-Verlag, Berlin, second edition.
  • [19] D. Nualart and E. Nualart (2018): Introduction to Malliavin Calculus, IMS Textbooks, Cambridge University Press.
  • [20] D. Nualart and H. Zhou (2018): Total variation estimates in the Breuer-Major theorem. Preprint arXiv:1807.09707.
  • [21] V. Pipiras and M.S. Taqqu (2017): Long-Range Dependence and Self-Similarity. Cambridge University Press.
  • [22] M. Taqqu (1979): Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. Verw. Gebiete 50, no. 1, pp. 53–83.
  • [23] C.A. Tudor (2013): Analysis of Variations for Self-similar Processes. Springer, 268 pages.
  • [24] M. Veraar (2009): Correlation inequalities and applications to vector-valued Gaussian random variables and fractional Brownian motion. Potential Anal. 30, no. 4, pp. 341–370.
  • [25] A. Vidotto (2017): An improved second order Poincaré inequality for functionals of Gaussian fields. To appear in: Journal of Theoretical Probability.