Electronic Communications in Probability

Critical Liouville measure as a limit of subcritical measures

Juhan Aru, Ellen Powell, and Avelio Sepúlveda

Full-text: Open access


We study how the Gaussian multiplicative chaos (GMC) measures $\mu ^\gamma $ corresponding to the 2D Gaussian free field change when $\gamma $ approaches the critical parameter $2$. In particular, we show that as $\gamma \to 2^{-}$, $(2-\gamma )^{-1}\mu ^\gamma $ converges in probability to $2\mu '$, where $\mu '$ is the critical GMC measure.

Article information

Electron. Commun. Probab., Volume 24 (2019), paper no. 18, 16 pp.

Received: 9 March 2018
Accepted: 5 January 2019
First available in Project Euclid: 23 March 2019

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60G15: Gaussian processes 60G60: Random fields 60D05: Geometric probability and stochastic geometry [See also 52A22, 53C65]
Secondary: 60G60: Random fields 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60J67: Stochastic (Schramm-)Loewner evolution (SLE)

Multiplicative chaos Liouville measure Liouville quantum gravity multiplicative cascades critical GMC measure first passage sets Gaussian free field local sets

Creative Commons Attribution 4.0 International License.


Aru, Juhan; Powell, Ellen; Sepúlveda, Avelio. Critical Liouville measure as a limit of subcritical measures. Electron. Commun. Probab. 24 (2019), paper no. 18, 16 pp. doi:10.1214/19-ECP209. https://projecteuclid.org/euclid.ecp/1553306557

Export citation


  • [Aïd15] Elie Aïdékon. The extremal process in nested conformal loops. Preprint available on the webpage of the author, 2015.
  • [ALS17] Juhan Aru, Titus Lupu, and Avelio Sepúlveda. First passage sets of the 2D continuum Gaussian free field. arXiv preprint arXiv:1706.07737, 2017.
  • [ALS18] Juhan Aru, Titus Lupu, and Avelio Sepúlveda. The first passage sets of the 2D Gaussian free field: convergence and isomorphisms. arXiv preprint arXiv:1805.09204, 2018.
  • [AP18] Juhan Aru and Ellen Powell. In preparation. 2018.
  • [APS17] Juhan Aru, Ellen Powell, and Avelio Sepúlveda. Approximating Liouville measure using local sets of the Gaussian free field. arXiv preprint arXiv:1701.05872, 2017.
  • [Aru17] Juhan Aru. Gaussian multiplicative chaos through the lens of the 2D Gaussian free field. arXiv preprint arXiv:1709.04355, 2017.
  • [Ber15] N. Berestycki. Introduction to the Gaussian free field and Liouville quantum gravity. Lecture notes, 2015.
  • [Ber17] Nathanaël Berestycki. An elementary approach to Gaussian multiplicative chaos. Electronic communications in Probability, 22, 2017.
  • [BK04] John D Biggins and Andreas E Kyprianou. Measure change in multitype branching. Advances in Applied Probability, 36(2):544–581, 2004.
  • [CS11] Dmitry Chelkak and Stanislav Smirnov. Discrete complex analysis on isoradial graphs. Advances in Mathematics, 228(3):1590–1630, 2011.
  • [DKRV16] François David, Antti Kupiainen, Rémi Rhodes, and Vincent Vargas. Liouville quantum gravity on the Riemann sphere. Communications in Mathematical Physics, 342(3):869–907, 2016.
  • [DMS14] Bertrand Duplantier, Jason Miller, and Scott Sheffield. Liouville quantum gravity as a mating of trees. arXiv preprint arXiv:1409.7055, 2014.
  • [DRSV14a] Bertrand Duplantier, Rémi Rhodes, Scott Sheffield, and Vincent Vargas. Critical Gaussian multiplicative chaos: convergence of the derivative martingale. The Annals of Probability, 42(5):1769–1808, 2014.
  • [DRSV14b] Bertrand Duplantier, Rémi Rhodes, Scott Sheffield, and Vincent Vargas. Renormalization of critical Gaussian multiplicative chaos and KPZ relation. Communications in Mathematical Physics, 330(1):283–330, 2014.
  • [DS11] Bertrand Duplantier and Scott Sheffield. Liouville quantum gravity and KPZ. Inventiones mathematicae, 185(2):333–393, 2011.
  • [HK71] Raphael Høegh-Krohn. A general class of quantum fields without cut-offs in two space-time dimensions. Communications in Mathematical Physics, 21(3):244–255, 1971.
  • [HRV15] Yichao Huang, Rémi Rhodes, and Vincent Vargas. Liouville quantum gravity on the unit disk. arXiv preprint arXiv:1502.04343, 2015.
  • [JS17] Janne Junnila and Eero Saksman. Uniqueness of critical Gaussian chaos. Electronic Journal of Probability, 22, 2017.
  • [Jun16] Janne Junnila. On the multiplicative chaos of non-Gaussian log-correlated fields. arXiv preprint arXiv:1606.08986, 2016.
  • [Kah85] Jean-Pierre Kahane. Sur le chaos multiplicatif. Annales des Sciences Mathématiques du Québec, 9(2):105–150, 1985.
  • [KP76] Jean-Pierre Kahane and Jacques Peyriere. Sur certaines martingales de Benoit Mandelbrot. Advances in mathematics, 22(2):131–145, 1976.
  • [Law08] Gregory F Lawler. Conformally invariant processes in the plane. Number 114. American Mathematical Soc., 2008.
  • [Mad16] Thomas Madaule. First order transition for the branching random walk at the critical parameter. Stochastic Processes and their Applications, 126(2):470–502, 2016.
  • [Pow18] Ellen Powell. Critical Gaussian chaos: convergence and uniqueness in the derivative normalisation. Electronic Journal of Probability, 23(31):1–26, 2018.
  • [Rem17] Guillaume Remy. The Fyodorov-Bouchaud formula and Liouville conformal field theory. arXiv preprint arXiv:1710.06897, 2017.
  • [RV10] Raoul Robert and Vincent Vargas. Gaussian multiplicative chaos revisited. The Annals of Probability, 38(2):605–631, 2010.
  • [RV16] Rémi Rhodes and Vincent Vargas. Lecture notes on Gaussian multiplicative chaos and Liouville quantum gravity. arXiv:1602.07323, 2016.
  • [She10] S. Sheffield. Conformal weldings of random surfaces: Sle and the quantum gravity zipper. arXiv preprint arXiv:1012.4797, 2010.
  • [SS13] Oded Schramm and Scott Sheffield. A contour line of the continuum Gaussian free field. Probability Theory and Related Fields, 157(1-2):47–80, 2013.
  • [vBE65] Bengt von Bahr and Carl-Gustav Esseen. Inequalities for the $r$ th absolute moment of a sum of random variables, $1\leq r\leq 2$. The Annals of Mathematical Statistics, 36(1):299–303, 1965.