Electronic Communications in Probability

Rigidity of the $\operatorname{Sine} _{\beta }$ process

Chhaibi Reda and Joseph Najnudel

Full-text: Open access


We show that the $\operatorname{Sine} _{\beta }$ point process, defined as the scaling limit of the Circular Beta Ensemble when the dimension goes to infinity, and generalizing the determinantal sine-kernel process, is rigid in the sense of Ghosh and Peres: the number of points in a given bounded Borel set $B$ is almost surely equal to a measurable function of the position of the points outside $B$.

Article information

Electron. Commun. Probab., Volume 23 (2018), paper no. 94, 8 pp.

Received: 26 May 2018
Accepted: 16 November 2018
First available in Project Euclid: 18 December 2018

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60G55: Point processes 60G57: Random measures 60K99: None of the above, but in this section

the sine$_\beta $ point process rigidity of point processes random matrices

Creative Commons Attribution 4.0 International License.


Reda, Chhaibi; Najnudel, Joseph. Rigidity of the $\operatorname{Sine} _{\beta }$ process. Electron. Commun. Probab. 23 (2018), paper no. 94, 8 pp. doi:10.1214/18-ECP195. https://projecteuclid.org/euclid.ecp/1545102490

Export citation


  • [BQ15] A. I. Bufetov and Y. Qiu. Equivalence of Palm measures for determinantal point processes associated with Hilbert spaces of holomorphic functions. C. R. Math. Acad. Sci. Paris, 353(6):551–555, 2015.
  • [BQ17a] A. I. Bufetov and Y. Qiu. Conditional measures of generalized Ginibre point processes. J. Funct. Anal., 272(11):4671–4708, 2017.
  • [BQ17b] A. I. Bufetov and Y. Qiu. Determinantal point processes associated with Hilbert spaces of holomorphic functions. Comm. Math. Phys., 351(1):1–44, 2017.
  • [BS17] A. I. Bufetov and T. Shirai. Quasi-symmetries and rigidity for determinantal point processes associated with de Branges spaces. Proc. Japan Acad. Ser. A Math. Sci., 93(1):1–5, 2017.
  • [Buf16] A. I. Bufetov. Rigidity of determinantal point processes with the Airy, the Bessel and the gamma kernel. Bull. Math. Sci., 6(1):163–172, 2016.
  • [DE02] I. Dumitriu and A. Edelman. Matrix models for beta ensembles. J. Math. Phys., 43(11):5830–5847, 2002.
  • [DVJ03] D. J. Daley and D. Vere-Jones. An introduction to the theory of point processes. Vol. I. Probability and its Applications (New York). Springer-Verlag, New York, second edition, 2003. Elementary theory and methods.
  • [Dys62a] F. J. Dyson. Statistical theory of the energy levels of complex systems. I. J. Mathematical Phys., 3:140–156, 1962.
  • [Dys62b] F. J. Dyson. Statistical theory of the energy levels of complex systems. II. J. Mathematical Phys., 3:157–165, 1962.
  • [Dys62c] F. J. Dyson. Statistical theory of the energy levels of complex systems. III. J. Mathematical Phys., 3:166–175, 1962.
  • [Gho15] S. Ghosh. Determinantal processes and completeness of random exponentials: the critical case. Probab. Theory Related Fields, 163(3-4):643–665, 2015.
  • [GP17] S. Ghosh and Y. Peres. Rigidity and tolerance in point processes: Gaussian zeros and Ginibre eigenvalues. Duke Math. J., 166(10):1789–1858, 2017.
  • [HS13] A. E. Holroyd and T. Soo. Insertion and deletion tolerance of point processes. Electron. J. Probab., 18:no. 74, 24, 2013.
  • [JM15] T. Jiang and S. Matsumoto. Moments of traces of circular beta-ensembles. Ann. Probab., 43(6):3279–3336, 2015.
  • [KN04] R. Killip and I. Nenciu. Matrix models for circular ensembles. Int. Math. Res. Not., (50):2665–2701, 2004.
  • [KS09] R. Killip and M. Stoiciu. Eigenvalue statistics for CMV matrices: from Poisson to clock via random matrix ensembles. Duke Math. J., 146(3):361–399, 2009.
  • [Mon73] H. L. Montgomery. The pair correlation of zeros of the zeta function. pages 181–193, 1973.
  • [RS94] Z. Rudnick and P. Sarnak. The $n$-level correlations of zeros of the zeta function. C. R. Acad. Sci. Paris Sér. I Math., 319(10):1027–1032, 1994.
  • [Sos00] A. Soshnikov. Determinantal random point fields. Uspekhi Mat. Nauk, 55(5(335)):107–160, 2000.
  • [Tro84] H. F. Trotter. Eigenvalue distributions of large Hermitian matrices; Wigner’s semicircle law and a theorem of Kac, Murdock, and Szegö. Adv. in Math., 54(1):67–82, 1984.
  • [VV09] B. Valkó and B. Virág. Continuum limits of random matrices and the Brownian carousel. Invent. Math., 177(3):463–508, 2009.
  • [VV17] B. Valkó and B. Virág. The $\rm Sine_\beta $ operator. Invent. Math., 209(1):275–327, 2017.