Open Access
2018 Rigidity of the $\operatorname{Sine} _{\beta }$ process
Chhaibi Reda, Joseph Najnudel
Electron. Commun. Probab. 23: 1-8 (2018). DOI: 10.1214/18-ECP195

Abstract

We show that the $\operatorname{Sine} _{\beta }$ point process, defined as the scaling limit of the Circular Beta Ensemble when the dimension goes to infinity, and generalizing the determinantal sine-kernel process, is rigid in the sense of Ghosh and Peres: the number of points in a given bounded Borel set $B$ is almost surely equal to a measurable function of the position of the points outside $B$.

Citation

Download Citation

Chhaibi Reda. Joseph Najnudel. "Rigidity of the $\operatorname{Sine} _{\beta }$ process." Electron. Commun. Probab. 23 1 - 8, 2018. https://doi.org/10.1214/18-ECP195

Information

Received: 26 May 2018; Accepted: 16 November 2018; Published: 2018
First available in Project Euclid: 18 December 2018

zbMATH: 07023480
MathSciNet: MR3896832
Digital Object Identifier: 10.1214/18-ECP195

Subjects:
Primary: 60G55 , 60G57 , 60K99

Keywords: random matrices , rigidity of point processes , the sine$_\beta $ point process

Back to Top