Electronic Communications in Probability

A moment-generating formula for Erdős-Rényi component sizes

Balázs Ráth

Full-text: Open access

Abstract

We derive a simple formula characterizing the distribution of the size of the connected component of a fixed vertex in the Erdős-Rényi random graph which allows us to give elementary proofs of some results of [9] and [12] about the susceptibility in the subcritical graph and the CLT [17] for the size of the giant component in the supercritical graph.

Article information

Source
Electron. Commun. Probab., Volume 23 (2018), paper no. 24, 14 pp.

Dates
Received: 30 July 2017
Accepted: 12 March 2018
First available in Project Euclid: 26 April 2018

Permanent link to this document
https://projecteuclid.org/euclid.ecp/1524708114

Digital Object Identifier
doi:10.1214/18-ECP126

Zentralblatt MATH identifier
1391.60024

Subjects
Primary: 60C05: Combinatorial probability 60F05: Central limit and other weak theorems 82B26: Phase transitions (general) 05A15: Exact enumeration problems, generating functions [See also 33Cxx, 33Dxx]

Keywords
Erdős-Rényi graph generating function susceptibility giant component central limit theorem

Rights
Creative Commons Attribution 4.0 International License.

Citation

Ráth, Balázs. A moment-generating formula for Erdős-Rényi component sizes. Electron. Commun. Probab. 23 (2018), paper no. 24, 14 pp. doi:10.1214/18-ECP126. https://projecteuclid.org/euclid.ecp/1524708114


Export citation

References

  • [1] D. J. Aldous. Brownian excursions, critical random graphs and the multiplicative coalescent. The Annals of Probability 812–854, 1997.
  • [2] D. J. Aldous. Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists. Bernoulli 5.1: 3–48, 1999.
  • [3] N. Alon, J. H. Spencer. The probabilistic method (Second edition). Wiley, 2000.
  • [4] N. Alon, J. H. Spencer. The probabilistic method (Fourth edition). Wiley, 2016.
  • [5] D. Barraez, S. Boucheron, W. F. De La Vega. On the fluctuations of the giant component. Combinatorics, Probability and Computing 9.4, 28–304, 2000.
  • [6] B. Bollobás. Random graphs. No. 73. Cambridge university press, 2001.
  • [7] B. Bollobás, S. Janson, O. Riordan. The phase transition in inhomogeneous random graphs. Random Structures and Algorithms 31.1: 3–122, 2007.
  • [8] P. Erdős, and A. Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci 5.1: 17–60, 1960.
  • [9] L. Federico, R. van der Hofstad, F. den Hollander, T. Hulshof. Expansion of percolation critical points for Hamming graphs. arXiv:1701.02099, 2017.
  • [10] R. van der Hofstad., W. Kager, T. Müller. A local limit theorem for the critical random graph. Electr. Comm. in Probab. 14: 122–131, 2009.
  • [11] R. van der Hofstad. Random graphs and complex networks. Cambridge Series in Statistical and probabilistic Mathematics 43, 2016.
  • [12] S. Janson, M. J. Luczak. Susceptibility in subcritical random graphs. Journal of Mathematical Physics 49.12, 125207, 2008.
  • [13] S. Janson, T. Luczak, A. Rucinski. Random graphs. Vol. 45. John Wiley and Sons, 2011.
  • [14] S. Lemaire. A multiplicative coalescent with asynchronous multiple mergers. arXiv:1709.01896, 2017.
  • [15] A. Martin-Löf. The final size of a nearly critical epidemic, and the first passage time of a Wiener process to a parabolic barrier. Journal of Applied probability 35.3: 671–682, 1998.
  • [16] J. B. Martin, B. Ráth. Rigid representations of the multiplicative coalescent with linear deletion. Electron. J. Probab. Vol. 22, paper no. 83, 2017.
  • [17] B. Pittel. On tree census and the giant component in sparse random graphs. Random Structures and Algorithms 1.3: 311–342, 1990.