Electronic Communications in Probability

Note on a one-dimensional system of annihilating particles

Vladas Sidoravicius and Laurent Tournier

Full-text: Open access


We consider a system of annihilating particles where particles start from the points of a Poisson process on either the full-line or positive half-line and move at constant i.i.d. speeds until collision. When two particles collide, they annihilate. We assume the law of speeds to be symmetric. We prove almost sure annihilation of positive-speed particles started from the positive half-line, and existence of a regime of survival of zero-speed particles on the full-line in the case when speeds can only take 3 values. We also state open questions.

Article information

Electron. Commun. Probab., Volume 22 (2017), paper no. 59, 9 pp.

Received: 1 March 2017
Accepted: 29 August 2017
First available in Project Euclid: 18 October 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

interacting particle system ballistic annihilation

Creative Commons Attribution 4.0 International License.


Sidoravicius, Vladas; Tournier, Laurent. Note on a one-dimensional system of annihilating particles. Electron. Commun. Probab. 22 (2017), paper no. 59, 9 pp. doi:10.1214/17-ECP83. https://projecteuclid.org/euclid.ecp/1508292097

Export citation


  • [1] Michael Aizenman and Bruno Nachtergaele, Geometric aspects of quantum spin states, Communications in Mathematical Physics 164 (1994), no. 1, 17–63.
  • [2] Vladimir Belitsky and Pablo A Ferrari, Ballistic annihilation and deterministic surface growth, Journal of statistical physics 80 (1995), no. 3-4, 517–543.
  • [3] E Ben-Naim, S Redner, and F Leyvraz, Decay kinetics of ballistic annihilation, Physical review letters 70 (1993), no. 12, 1890.
  • [4] GF Carnevale, Y Pomeau, and WR Young, Statistics of ballistic agglomeration, Physical review letters 64 (1990), no. 24, 2913.
  • [5] Michel Droz, Pierre-Antoine Rey, Laurent Frachebourg, and Jarosław Piasecki, Ballistic-annihilation kinetics for a multivelocity one-dimensional ideal gas, Physical Review E 51 (1995), no. 6, 5541.
  • [6] Brittany Dygert, Matthew Junge, Christoph Kinzel, Annie Raymond, Erik Slivken, and Jennifer Zhu, The bullet problem with discrete speeds, arXiv:1610.00282.
  • [7] Yves Elskens and Harry L Frisch, Annihilation kinetics in the one-dimensional ideal gas, Physical Review A 31 (1985), no. 6, 3812.
  • [8] Alexei Ermakov, Bálint Tóth, and Wendelin Werner, On some annihilating and coalescing systems, Journal of statistical physics 91 (1998), no. 5, 845–870.
  • [9] Michael Kleber and David Wilson, “Ponder This” IBM research challenge., https://www.research.ibm.com/haifa/ponderthis/challenges/May2014.html, May 2014.
  • [10] PL Krapivsky, S Redner, and F Leyvraz, Ballistic annihilation kinetics: The case of discrete velocity distributions, Physical Review E 51 (1995), no. 5, 3977.
  • [11] PL Krapivsky and Clément Sire, Ballistic annihilation with continuous isotropic initial velocity distribution, Physical review letters 86 (2001), no. 12, 2494.
  • [12] Joachim Krug and Herbert Spohn, Universality classes for deterministic surface growth, Physical Review A 38 (1988), no. 8, 4271.
  • [13] Philippe A Martin and Jaroslaw Piasecki, One-dimensional ballistic aggregation: Rigorous long-time estimates, Journal of statistical physics 76 (1994), no. 1, 447–476.
  • [14] Jarosław Piasecki, Ballistic annihilation in a one-dimensional fluid, Physical Review E 51 (1995), no. 6, 5535.
  • [15] Sidney Redner, Scaling theories of diffusion-controlled and ballistically controlled bimolecular reactions, Nonequilibrium statistical mechanics in one dimension 1 (1997).
  • [16] Emmanuel Trizac, Kinetics and scaling in ballistic annihilation, Physical review letters 88 (2002), no. 16, 160601.