Electronic Communications in Probability

Large deviations for biorthogonal ensembles and variational formulation for the Dykema-Haagerup distribution

Raphaël Butez

Full-text: Open access


This note provides a large deviation principle for a class of biorthogonal ensembles. We extend the results of Eichelsbacher, Sommerauer and Stolz to a more general type of interactions. In particular, our result covers the case of the singular values of lower triangular random matrices with independent entries introduced by Cheliotis and implies a variational formulation for the Dykema–Haagerup distribution.

Article information

Electron. Commun. Probab. Volume 22 (2017), paper no. 37, 11 pp.

Received: 23 February 2016
Accepted: 15 June 2017
First available in Project Euclid: 3 July 2017

Permanent link to this document

Digital Object Identifier

Primary: 60F10: Large deviations 60B20: Random matrices (probabilistic aspects; for algebraic aspects see 15B52)

large deviations Coulomb gases biorthogonal ensembles

Creative Commons Attribution 4.0 International License.


Butez, Raphaël. Large deviations for biorthogonal ensembles and variational formulation for the Dykema-Haagerup distribution. Electron. Commun. Probab. 22 (2017), paper no. 37, 11 pp. doi:10.1214/17-ECP68. https://projecteuclid.org/euclid.ecp/1499068820.

Export citation


  • [1] Greg Anderson, Alice Guionnet, and Ofer Zeitouni, An introduction to random matrices, no. 118, Cambridge University Press, 2010.
  • [2] Gérard Ben Arous and Ofer Zeitouni, Large deviations from the circular law, ESAIM: Probability and Statistics 2 (1998), 123–134.
  • [3] Gérard Ben Arous and Alice Guionnet, Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy, Probab. Theory Related Fields 108 (1997), no. 4, 517–542.
  • [4] Thomas Bloom, Norman Levenberg, Vilmos Totik, and Franck Wielonsky, Modified logarithmic potential theory and applications, arXiv preprint arXiv:1502.06925 (2015).
  • [5] Vladimir Bogachev, Measure theory, vol. 2, Springer, 2007.
  • [6] Alexei Borodin, Biorthogonal ensembles, Nuclear Physics B 536 (1998), no. 3, 704–732.
  • [7] Djalil Chafaï, Nathael Gozlan, and Pierre-André Zitt, First-order global asymptotics for confined particles with singular pair repulsion, Ann. Appl. Probab. 24 (2014), no. 6, 2371–2413.
  • [8] Dimitris Cheliotis, Triangular random matrices and biorthogonal ensembles, arXiv preprint arXiv:1404.4730 (2014).
  • [9] Tom Claeys and Dong Wang, Random matrices with equispaced external source, Communications in Mathematical Physics 328 (2014), no. 3, 1023–1077.
  • [10] Katrin Credner and Peter Eichelsbacher, Large deviations for the largest eigenvalue of disordered bosons and disordered fermionic systems, arXiv preprint arXiv:1503.00984 (2015).
  • [11] Ken Dykema and Uffe Haagerup, Dt-operators and decomposability of voiculescu’s circular operator, American journal of mathematics 126 (2004), no. 1, 121–189.
  • [12] Peter Eichelsbacher, Jens Sommerauer, and Michael Stolz, Large deviations for disordered bosons and multiple orthogonal polynomial ensembles, Journal of Mathematical Physics 52 (2011), no. 7, 073510.
  • [13] Friedrich Götze and Martin Venker, Local universality of repulsive particle systems and random matrices, The Annals of Probability 42 (2014), no. 6, 2207–2242.
  • [14] Fumio Hiai and Dénes Petz, The semicircle law, free random variables and entropy, vol. 77, American Mathematical Society Providence, 2000.
  • [15] Tobias Lueck, Hans-Jürgen Sommers, and Martin Zirnbauer, Energy correlations for a random matrix model of disordered bosons, Journal of mathematical physics 47 (2006), no. 10, 103304.
  • [16] Khandker Abdul Muttalib, Random matrix models with additional interactions, Journal of Physics A: Mathematical and General 28 (1995), no. 5, L159.