Electronic Communications in Probability

Borel liftings of graph limits

Peter Orbanz and Balazs Szegedy

Full-text: Open access

Abstract

The cut pseudo-metric on the space of graph limits induces an equivalence relation. The quotient space obtained by collapsing each equivalence class to a point is a metric space with appealing analytic properties. We show the equivalence relation admits a Borel lifting: There exists a Borel-measurable mapping that maps each equivalence class to one of its elements. The result yields a general framework for proving measurability properties on the space of graph limits. We give several examples, including Borel-measurability of the set of isomorphism classes of random-free graphons.

Article information

Source
Electron. Commun. Probab. Volume 21 (2016), paper no. 65, 4 pp.

Dates
Received: 15 July 2016
Accepted: 5 August 2016
First available in Project Euclid: 14 September 2016

Permanent link to this document
https://projecteuclid.org/euclid.ecp/1473854581

Digital Object Identifier
doi:10.1214/16-ECP14

Zentralblatt MATH identifier
1346.05274

Subjects
Primary: 05C80: Random graphs [See also 60B20]

Keywords
graph limits random graphs

Rights
Creative Commons Attribution 4.0 International License.

Citation

Orbanz, Peter; Szegedy, Balazs. Borel liftings of graph limits. Electron. Commun. Probab. 21 (2016), paper no. 65, 4 pp. doi:10.1214/16-ECP14. https://projecteuclid.org/euclid.ecp/1473854581.


Export citation

References

  • [1] P. J. Bickel, A. Chen, and E. Levina. The method of moments and degree distributions for network models. Ann. Statist., 39(5):2280–2301, 2011.
  • [2] C. Borgs, J. T. Chayes, and L. Lovász. Moments of Two-Variable Functions and the Uniqueness of Graph Limits. Geom. Funct. Anal., 19(6): 1597–1619, 2010.
  • [3] C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi. Convergent sequences of dense graphs. I. Subgraph frequencies, metric properties and testing. Adv. Math., 219(6):1801–1851, 2008.
  • [4] C. Borgs, J. T. Chayes, L. Lovász, V. T. Sós, and K. Vesztergombi. Convergent sequences of dense graphs II. Multiway cuts and statistical physics. Ann. of Math. (2), 176(1):151–219, 2012.
  • [5] Castaing, C. (1967). Sur les multi-applications mesurables. Revue Francaise d’Information et de Recherche Opèrationnaelle, 1, 91–126.
  • [6] S. Chatterjee and S. R. S. Varadhan. The large deviation principle for the Erdős-Rényi random graph. European J. Combin., 32(7):1000–1017, 2011.
  • [7] P. Diaconis and S. Janson. Graph limits and exchangeable random graphs. Rendiconti di Matematica, Serie VII, 28:33–61, 2008.
  • [8] A. S. Kechris. Classical Descriptive Set Theory. Springer, 1995.
  • [9] E. Klein and A. C. Thompson. Theory of correspondences. J. Wiley & Sons, 1984.
  • [10] Kuratowski, K. and Ryll-Nardzewski, C. (1965). A general theorem on selectors. Bulletin de l’Académie Polonaise des Sciences; Serie des Sciences Mathèmatiques, Astronomiques et Physiques, 13, 397–403.
  • [11] L. Lovász. Large Networks and Graph Limits. American Mathematical Society, 2013.
  • [12] L. Lovász and B. Szegedy. Limits of dense graph sequences. J. Combin. Theory Ser. B, 96:933–957, 2006.
  • [13] L. Lovász and B. Szegedy. Szemerédi’s lemma for the analyst. Geom. Funct. Anal., 17(1):252–270, 2007.
  • [14] Lovász, L. and Szegedy, B. (2010). Testing properties of graphs and functions. Israel J. Math., 178(1), 113–156.