Electronic Communications in Probability

The common ancestor type distribution of a $\Lambda$-Wright-Fisher process with selection and mutation

Ellen Baake, Ute Lenz, and Anton Wakolbinger

Full-text: Open access


Using graphical methods based on a ‘lookdown’ and pruned version of the ancestral selection graph, we obtain a representation of the type distribution of the ancestor in a two-type Wright-Fisher population with mutation and selection, conditional on the overall type frequency in the old population. This extends results from [17] to the case of heavy-tailed offspring, directed by a reproduction measure $\Lambda$. The representation is in terms of the equilibrium tail probabilities of the line-counting process $L$ of the graph. We identify a strong pathwise Siegmund dual of $L$, and characterise the equilibrium tail probabilities of $L$ in terms of hitting probabilities of the dual process.

Article information

Electron. Commun. Probab., Volume 21 (2016), paper no. 59, 16 pp.

Received: 11 March 2016
Accepted: 8 August 2016
First available in Project Euclid: 9 September 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60J75: Jump processes 92D15: Problems related to evolution 60C05: Combinatorial probability 05C80: Random graphs [See also 60B20]

common ancestor type distribution ancestral selection graph lookdown graph pruning $\Lambda$-Wright-Fisher diffusion selection mutation strong pathwise Siegmund duality flights

Creative Commons Attribution 4.0 International License.


Baake, Ellen; Lenz, Ute; Wakolbinger, Anton. The common ancestor type distribution of a $\Lambda$-Wright-Fisher process with selection and mutation. Electron. Commun. Probab. 21 (2016), paper no. 59, 16 pp. doi:10.1214/16-ECP16. https://projecteuclid.org/euclid.ecp/1473424720

Export citation


  • [1] B. Bah and E. Pardoux, The $\Lambda $-lookdown model with selection, Stoch. Proc. Appl. 125 (2015), 1089–1126.
  • [2] N. Berestycki, Recent progress in coalescent theory, Ensaios Mat. 16 (2009).
  • [3] P. Clifford and A. Sudbury, A sample path proof of the duality for stochastically monotone Markov processes, Ann. Probab. 13 (1985), 558–565.
  • [4] J. T. Cox and U. Rösler, A duality relation for entrance and exit laws for Markov processes, Stoch. Proc. Appl. 16 (1984), 141–156.
  • [5] A. Depperschmidt, A. Greven, and P. Pfaffelhuber, Tree-valued Fleming-Viot dynamics with mutation and selection, Ann. Appl. Probab. 22 (2012), 2560–2615.
  • [6] P. Donnelly and T. G. Kurtz, Genealogical processes for Fleming-Viot models with selection and recombination, Ann. Appl. Probab. 9 (1999), 1091–1148.
  • [7] A. M. Etheridge, R. C. Griffiths, and J. E. Taylor, A coalescent dual process in a Moran model with genic selection, and the Lambda coalescent limit, Theor. Popul. Biol. 78 (2010), 77–92.
  • [8] P. Fearnhead, The common ancestor at a nonneutral locus, J. Appl. Probab. 39 (2002), 38–54.
  • [9] C. Foucart, The impact of selection in the $\Lambda $-Wright-Fisher model, Electron. Commun. Probab. 18 (2013), 1–10.
  • [10] R. C. Griffiths, The $\Lambda $-Fleming-Viot process and a connection with Wright-Fisher diffusion, Adv. Appl. Probab. 46 (2014), 1009–1035.
  • [11] F. Gaiser and M. Möhle, On the block counting process and the fixation line of exchangeable coalescents, preprint available at arXiv:1603.09077 [math.PR].
  • [12] Ph. Herriger and M. Möhle, Conditions for exchangeable coalescents to come down from infinity, ALEA Lat. Am. J. Probab. Math. Stat. 9 (2012), 637–665.
  • [13] O. Hénard, The fixation line in the $\Lambda $-coalescent, Ann. Appl. Probab. 25 (2015), 3007–3032.
  • [14] S. Jansen and N. Kurt, On the notion(s) of duality for Markov processes, Probab. Surv. 11 (2014), 59–120.
  • [15] S. Kluth, T. Hustedt, and E. Baake, The common ancestor process revisited, Bull. Math. Biol. 75 (2013), 2003–2027.
  • [16] S. M. Krone and C. Neuhauser, Ancestral processes with selection, Theor. Popul. Biol. 51 (1997), 210–237.
  • [17] U. Lenz, S. Kluth, E. Baake, and A. Wakolbinger, Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution, Theor. Popul. Biol. 103 (2015), 27–37.
  • [18] P. Donnelly and T. G. Kurtz, Particle representations for measure-valued population models, Ann. Probab. 27 (1999), 166–205.
  • [19] P. Pfaffelhuber and A. Wakolbinger, The process of most recent common ancestors in an evolving coalescent, Stoch. Proc. Appl. 116 (2006), 1836–1859.
  • [20] J. Pitman, Coalescents with multiple collisions, Ann. Probab. 27 (1999), 1870–1902.
  • [21] S. Sagitov, The general coalescent with asynchronous mergers of ancestral lines, J. Appl. Probab. 36 (1999), 1116–1125.
  • [22] D. Siegmund, The equivalence of absorbing and reflecting barrier problems for stochastically monotone Markov processes, Ann. Probab. 4 (1976), 914–924.
  • [23] J. E. Taylor, The common ancestor process for a Wright-Fisher diffusion, Electron. J. Probab. 12 (2007), 808–847.