Electronic Communications in Probability

Contact process on one-dimensional long range percolation

Van Hao Can

Full-text: Open access

Abstract

<span style="color: #000000;">Recently, by introducing the notion of cumulatively merged partition, M<span style="color: #800000;">énard<span style="color: #000000;"> and Singh provide <span style="color: #000000;">a sufficient condition on graphs ensuring that the critical value of the contact process is positive. In this note, we show that the one-dimensional long range percolation with high exponent satisfies their condition and thus the contact process exhibits a non-trivial phase transition.

Article information

Source
Electron. Commun. Probab., Volume 20 (2015), paper no. 93, 11 pp.

Dates
Accepted: 17 December 2015
First available in Project Euclid: 7 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ecp/1465321020

Digital Object Identifier
doi:10.1214/ECP.v20-4461

Mathematical Reviews number (MathSciNet)
MR3438738

Zentralblatt MATH identifier
1334.82044

Subjects
Primary: 82C22: Interacting particle systems [See also 60K35]
Secondary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 05C80: Random graphs [See also 60B20]

Keywords
Contact process Cumulative merging Long range percolation

Rights
This work is licensed under a Creative Commons Attribution 3.0 License.

Citation

Can, Van Hao. Contact process on one-dimensional long range percolation. Electron. Commun. Probab. 20 (2015), paper no. 93, 11 pp. doi:10.1214/ECP.v20-4461. https://projecteuclid.org/euclid.ecp/1465321020


Export citation

References

  • Benjamini, Itai; Berger, Noam. The diameter of long-range percolation clusters on finite cycles. Random Structures Algorithms 19 (2001), no. 2, 102–111.
  • Biskup, Marek. On the scaling of the chemical distance in long-range percolation models. Ann. Probab. 32 (2004), no. 4, 2938–2977.
  • Crawford, Nicholas; Sly, Allan. Simple random walk on long-range percolation clusters II: scaling limits. Ann. Probab. 41 (2013), no. 2, 445–502.
  • Harris, T. E. Contact interactions on a lattice. Ann. Probability 2 (1974), 969–988.
  • Liggett, Thomas M. Stochastic interacting systems: contact, voter and exclusion processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 324. Springer-Verlag, Berlin, 1999. xii+332 pp. ISBN: 3-540-65995-1
  • L. Ménard, A. Singh. Percolation by cumulative merging and phase transition for the contact process on random graphs, arXiv:1502.06982v1.
  • Pemantle, Robin. The contact process on trees. Ann. Probab. 20 (1992), no. 4, 2089–2116.
  • Pemantle, Robin; Stacey, Alan M. The branching random walk and contact process on Galton-Watson and nonhomogeneous trees. Ann. Probab. 29 (2001), no. 4, 1563–1590.
  • Stacey, A. M. The existence of an intermediate phase for the contact process on trees. Ann. Probab. 24 (1996), no. 4, 1711–1726.
  • L. S. Schulman. Long range percolation in one dimension, J. Phys. A. Lett 16 (1983).
  • Zhang, Z. Q.; Pu, F. C.; Li, B. Z. Long-range percolation in one dimension. J. Phys. A 16 (1983), no. 3, L85–L89.