Electronic Communications in Probability

The glassy phase of the complex branching Brownian motion energy model

Lisa Hartung and Anton Klimovsky

Full-text: Open access

Abstract

We identify the fluctuations of the partition function for a class of random energy models, where the energies are given by the positions of the particles of the complex-valued branching Brownian motion (BBM). Specifically, we provide the weak limit theorems for the partition function in the so-called "glassy phase'' – the regime of parameters, where the behaviour of the partition function is governed by the extrema of BBM. We allow for arbitrary correlations between the real and imaginary parts of the energies. This extends the recent result of Madaule, Rhodes and Vargas (2013), where the uncorrelated case was treated. Inparticular, our result covers the case of the real-valued BBM energy model at complex temperatures.

Article information

Source
Electron. Commun. Probab., Volume 20 (2015), paper no. 78, 15 pp.

Dates
Accepted: 27 October 2015
First available in Project Euclid: 7 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ecp/1465321005

Digital Object Identifier
doi:10.1214/ECP.v20-4360

Mathematical Reviews number (MathSciNet)
MR3417450

Zentralblatt MATH identifier
1329.60303

Subjects
Primary: 60J80: Branching processes (Galton-Watson, birth-and-death, etc.)
Secondary: 60G70: Extreme value theory; extremal processes 60F05: Central limit and other weak theorems 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82B44: Disordered systems (random Ising models, random Schrödinger operators, etc.)

Keywords
Gaussian processes branching Brownian motion logarithmic correlations random energy model phase diagram extremal processes cluster processes multiplicative chaos

Rights
This work is licensed under a Creative Commons Attribution 3.0 License.

Citation

Hartung, Lisa; Klimovsky, Anton. The glassy phase of the complex branching Brownian motion energy model. Electron. Commun. Probab. 20 (2015), paper no. 78, 15 pp. doi:10.1214/ECP.v20-4360. https://projecteuclid.org/euclid.ecp/1465321005


Export citation

References

  • Aïdékon, E.; Berestycki, J.; Brunet, É.; Shi, Z. Branching Brownian motion seen from its tip. Probab. Theory Related Fields 157 (2013), no. 1-2, 405–451.
  • Arguin, L.-P.; Bovier, A.; Kistler, N. Genealogy of extremal particles of branching Brownian motion. Comm. Pure Appl. Math. 64 (2011), no. 12, 1647–1676.
  • Arguin, L.-P.; Bovier, A.; Kistler, N. The extremal process of branching Brownian motion. Probab. Theory Related Fields 157 (2013), no. 3-4, 535–574.
  • Athreya, K. B.; Ney, P. E. Branching processes. Die Grundlehren der mathematischen Wissenschaften, Band 196. Springer-Verlag, New York-Heidelberg, 1972. xi+287 pp.
  • Barral, J.; Jin, X.; Mandelbrot, B. Convergence of complex multiplicative cascades. Ann. Appl. Probab. 20 (2010), no. 4, 1219–1252.
  • Bovier, A. Statistical mechanics of disordered systems. A mathematical perspective. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2006. xiv+312 pp. ISBN: 978-0-521-84991-3; 0-521-84991-8
  • Bramson, M. Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Amer. Math. Soc. 44 (1983), no. 285, iv+190 pp.
  • Bramson, M. Maximal displacement of branching Brownian motion. Comm. Pure Appl. Math. 31 (1978), no. 5, 531–581.
  • Derrida, B. The zeroes of the partition function of the random energy model. Current problems in statistical mechanics (Washington, DC, 1991). Phys. A 177 (1991), no. 1-3, 31–37.
  • Derrida, B.; Evans, M. R.; Speer, E. R. Mean field theory of directed polymers with random complex weights. Comm. Math. Phys. 156 (1993), no. 2, 221–244.
  • Kabluchko, Z.; Klimovsky, A. Complex random energy model: zeros and fluctuations. Probab. Theory Related Fields 158 (2014), no. 1-2, 159–196.
  • Kabluchko, Z.; Klimovsky, A. Generalized random energy model at complex temperatures. Preprint (2014). Available at arXiv:1402.2142
  • Kistler, N.. Derrida's random energy models. From spin glasses to the extremes of correlated random fields. In: Correlated Random Systems: Five Different Methods., Springer, 2015.
  • Klenke, A. Probability theory. A comprehensive course. Translated from the 2006 German original. Universitext. Springer-Verlag London, Ltd., London, 2008. xii+616 pp. ISBN: 978-1-84800-047-6
  • Koukiou, F. Analyticity of the partition function of the random energy model. J. Phys. A 26 (1993), no. 23, L1207–L1210.
  • Lacoin, H.; Rhodes, R.; Vargas, V. Complex Gaussian multiplicative chaos. Comm. Math. Phys. 337 (2015), no. 2, 569–632.
  • Lee, T. D.; Yang, C. N. Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Physical Rev. (2) 87, (1952). 410–419.
  • Madaule, T.. Convergence in Law for the Branching Random Walk Seen from Its Tip. J. Theor. Probab. Online First, (2015). 37 pp.
  • Madaule, T.; Rhodes, R.; Vargas, V. The glassy phase of complex branching Brownian motion. Comm. Math. Phys. 334 (2015), no. 3, 1157–1187.
  • Panchenko, D. The Sherrington-Kirkpatrick model. Springer Monographs in Mathematics. Springer, New York, 2013. xii+156 pp. ISBN: 978-1-4614-6288-0; 978-1-4614-6289-7
  • Ruelle, D. Statistical mechanics: Rigorous results. W. A. Benjamin, Inc., New York-Amsterdam 1969. xi+219 pp.
  • Shi, Z. Branching Brownian Motion and the Spinal Decomposition. Lecture Notes, 2015. [pdf]
  • Yang, C. N.; Lee, T. D. Statistical theory of equations of state and phase transitions. I. Theory of condensation. Physical Rev. (2) 87, (1952). 404–409.