Abstract
A rotor-router walk on a graph is a deterministic process, in which each vertex is endowed with a rotor that points to one of the neighbors. A particle located at some vertex first rotates the rotor in a prescribed order, and then it is routed to the neighbor the rotor is now pointing at. In the current work we make a step toward in understanding the behavior of rotor router walks on random trees. More precisely, we consider random i.i.d. initial configurations of rotors on Galton-Watson trees T, i.e. on a family tree arising from a Galton-Watson process, and give a classification in recurrence and transience for rotor-router walks on these trees.
Citation
Wilfried Huss. Sebastian Müller. Ecaterina Sava-Huss. "Rotor-routing on Galton-Watson trees." Electron. Commun. Probab. 20 1 - 12, 2015. https://doi.org/10.1214/ECP.v20-4000
Information