Electronic Communications in Probability

Up-to-constants bounds on the two-point Green's function for SLE curves

Gregory Lawler and Mohammad Rezaei

Full-text: Open access


The Green's function for the chordal Schramm-Loewner evolution $SLE_\kappa$for $0 < \kappa < 8$,  gives the normalizedprobability of getting near points.  We give  up-to-constant bounds for the two-point Green's function.

Article information

Electron. Commun. Probab., Volume 20 (2015), paper no. 45, 13 pp.

Accepted: 10 June 2015
First available in Project Euclid: 7 June 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60J67: Stochastic (Schramm-)Loewner evolution (SLE)

SLE Two-point Green's function

This work is licensed under a Creative Commons Attribution 3.0 License.


Lawler, Gregory; Rezaei, Mohammad. Up-to-constants bounds on the two-point Green's function for SLE curves. Electron. Commun. Probab. 20 (2015), paper no. 45, 13 pp. doi:10.1214/ECP.v20-4246. https://projecteuclid.org/euclid.ecp/1465320972

Export citation


  • Alberts, Tom; Kozdron, Michael J. Intersection probabilities for a chordal SLE path and a semicircle. Electron. Commun. Probab. 13 (2008), 448–460.
  • Beffara, Vincent. The dimension of the SLE curves. Ann. Probab. 36 (2008), no. 4, 1421–1452.
  • Lawler, Gregory F. Conformally invariant processes in the plane. Mathematical Surveys and Monographs, 114. American Mathematical Society, Providence, RI, 2005. xii+242 pp. ISBN: 0-8218-3677-3
  • Lawler, G. Schramm-Loewner evolution (SLE). Statistical mechanics, 231–295, IAS/Park City Math. Ser., 16, Amer. Math. Soc., Providence, RI, 2009.
  • Lawler, Gregory F.; Rezaei, Mohammad A. Minkowski content and natural parameterization for the Schramm–Loewner evolution. Ann. Probab. 43 (2015), no. 3, 1082–1120.
  • Lawler, Gregory F.; Werness, Brent M. Multi-point Green's functions for SLE and an estimate of Beffara. Ann. Probab. 41 (2013), no. 3A, 1513–1555.
  • Lawler, Gregory F.; Zhou, Wang. SLE curves and natural parametrization. Ann. Probab. 41 (2013), no. 3A, 1556–1584.
  • Rohde, Steffen; Schramm, Oded. Basic properties of SLE. Ann. of Math. (2) 161 (2005), no. 2, 883–924.