Electronic Communications in Probability

Characterisation of gradient flows on finite state Markov chains

Helge Dietert

Full-text: Open access

Abstract

In his 2011 work, Maas has shown that the law of anytime-reversible continuous-time Markov chain with finite state space evolves like a gradient flow of the relative entropy with respect to its stationary distribution. In this work we show the converse to the above by showing that if the relative law of a Markov chain with finite state space evolves like a gradient flow of the relative entropy functional, it must be time-reversible. When we allow general functionals in place of the relative entropy, we show that the law of a Markov chain evolves as gradient flow if and only if the generator of the Markov chain is real diagonalisable. Finally, we discuss what aspects of the functional are uniquely determined by the Markov chain.

Article information

Source
Electron. Commun. Probab., Volume 20 (2015), paper no. 29, 8 pp.

Dates
Accepted: 29 March 2015
First available in Project Euclid: 7 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ecp/1465320956

Digital Object Identifier
doi:10.1214/ECP.v20-3521

Mathematical Reviews number (MathSciNet)
MR3327868

Zentralblatt MATH identifier
1327.60146

Subjects
Primary: MSC 60J27: Continuous-time Markov processes on discrete state spaces

Keywords
Gradient flows Finite state Markov chains Time-reversibility

Rights
This work is licensed under a Creative Commons Attribution 3.0 License.

Citation

Dietert, Helge. Characterisation of gradient flows on finite state Markov chains. Electron. Commun. Probab. 20 (2015), paper no. 29, 8 pp. doi:10.1214/ECP.v20-3521. https://projecteuclid.org/euclid.ecp/1465320956


Export citation

References

  • Chow, Shui-Nee; Huang, Wen; Li, Yao; Zhou, Haomin. Fokker-Planck equations for a free energy functional or Markov process on a graph. Arch. Ration. Mech. Anal. 203 (2012), no. 3, 969–1008.
  • Erbar, Matthias; Maas, Jan. Gradient flow structures for discrete porous medium equations. Discrete Contin. Dyn. Syst. 34 (2014), no. 4, 1355–1374.
  • Jordan, Richard; Kinderlehrer, David; Otto, Felix. The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998), no. 1, 1–17.
  • Maas, Jan. Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261 (2011), no. 8, 2250–2292.
  • Mielke, Alexander. A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. Nonlinearity 24 (2011), no. 4, 1329–1346.
  • Villani, Cédric. Optimal transport. Old and new. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 338. Springer-Verlag, Berlin, 2009. xxii+973 pp. ISBN: 978-3-540-71049-3