Open Access
2015 Functional limit theorems for divergent perpetuities in the contractive case
Dariusz Buraczewski, Alexander Iksanov
Author Affiliations +
Electron. Commun. Probab. 20: 1-14 (2015). DOI: 10.1214/ECP.v20-3915

Abstract

Let $\big(M_k, Q_k\big)_{k\in\mathbb{N}}$ be independent copies of an $\mathbb{R}^2$-valued random vector. It is known that if $Y_n:=Q_1+M_1Q_2+\ldots+M_1\cdot\ldots\cdot M_{n-1}Q_n$ converges a.s. to a random variable $Y$, then the law of $Y$ satisfies the stochastic fixed-point equation $Y \overset{d}{=} Q_1+M_1Y$, where $(Q_1, M_1)$ is independent of $Y$. In the present paper we consider the situation when $|Y_n|$ diverges to $\infty$ in probability because $|Q_1|$ takes large values with high probability, whereas the multiplicative random walk with steps $M_k$'s tends to zero a.s. Under a regular variation assumption we show that $\log |Y_n|$, properly scaled and normalized, converge weakly in the Skorokhod space equipped with the $J_1$-topology to an extremal process. A similar result also holds for the corresponding Markov chains. Proofs rely upon a deterministic result which establishes the $J_1$-convergence of certain sums to a maximal function and subsequent use of the Skorokhod representation theorem.

Citation

Download Citation

Dariusz Buraczewski. Alexander Iksanov. "Functional limit theorems for divergent perpetuities in the contractive case." Electron. Commun. Probab. 20 1 - 14, 2015. https://doi.org/10.1214/ECP.v20-3915

Information

Accepted: 31 January 2015; Published: 2015
First available in Project Euclid: 7 June 2016

zbMATH: 1307.60026
MathSciNet: MR3314645
Digital Object Identifier: 10.1214/ECP.v20-3915

Subjects:
Primary: 60F17
Secondary: 60G50

Keywords: Extremal process , Functional limit theorem , perpetuity , random difference equation

Back to Top