Electronic Communications in Probability

The quenched limiting distributions of a one-dimensional random walk in random scenery

Nadine Guillotin-Plantard, Yueyun Hu, and Bruno Schapira

Full-text: Open access

Abstract

For a one-dimensional random walk in random scenery (RWRS) on Z, we determine its quenched weak limits by applying Strassen's functional law of iterated logarithm. As a consequence, conditioned on the random scenery, the one dimensional RWRS does not converge in law, in contrast with the multi-dimensional case.

Article information

Source
Electron. Commun. Probab., Volume 18 (2013), paper no. 85, 7 pp.

Dates
Accepted: 3 November 2013
First available in Project Euclid: 7 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ecp/1465315624

Digital Object Identifier
doi:10.1214/ECP.v18-2918

Mathematical Reviews number (MathSciNet)
MR3141794

Zentralblatt MATH identifier
1329.60027

Subjects
Primary: 60F05: Central limit and other weak theorems
Secondary: 60G52: Stable processes

Keywords
Random walk in random scenery Weak limit theorem Law of the iterated logarithm Brownian motion in Brownian Scenery Strong approximation

Rights
This work is licensed under a Creative Commons Attribution 3.0 License.

Citation

Guillotin-Plantard, Nadine; Hu, Yueyun; Schapira, Bruno. The quenched limiting distributions of a one-dimensional random walk in random scenery. Electron. Commun. Probab. 18 (2013), paper no. 85, 7 pp. doi:10.1214/ECP.v18-2918. https://projecteuclid.org/euclid.ecp/1465315624


Export citation

References

  • Ben Arous, Gérard; ÄŒerný, Jiří. Scaling limit for trap models on $\Bbb Z^ d$. Ann. Probab. 35 (2007), no. 6, 2356–2384.
  • Bolthausen, Erwin. A central limit theorem for two-dimensional random walks in random sceneries. Ann. Probab. 17 (1989), no. 1, 108–115.
  • Borodin, A. N. A limit theorem for sums of independent random variables defined on a recurrent random walk. (Russian) Dokl. Akad. Nauk SSSR 246 (1979), no. 4, 786–787.
  • Borodin, A. N. Limit theorems for sums of independent random variables defined on a transient random walk. (Russian) Investigations in the theory of probability distributions, IV. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 85 (1979), 17–29, 237, 244.
  • Csáki, E. An integral test for the supremum of Wiener local time. Probab. Theory Related Fields 83 (1989), no. 1-2, 207–217.
  • Csáki, Endre; König, Wolfgang; Shi, Zhan. An embedding for the Kesten-Spitzer random walk in random scenery. Stochastic Process. Appl. 82 (1999), no. 2, 283–292.
  • Guillotin-Plantard, Nadine; Poisat, Julien. Quenched central limit theorems for random walks in random scenery. Stochastic Process. Appl. 123 (2013), no. 4, 1348–1367.
  • Guillotin-Plantard, N., Poisat, J. and Dos Santos, R.S. (2013) A quenched central limit theorem for planar random walks in random sceneries, Submitted.
  • Kesten, H.; Spitzer, F. A limit theorem related to a new class of self-similar processes. Z. Wahrsch. Verw. Gebiete 50 (1979), no. 1, 5–25.
  • Khoshnevisan, Davar; Lewis, Thomas M. A law of the iterated logarithm for stable processes in random scenery. Stochastic Process. Appl. 74 (1998), no. 1, 89–121.
  • Perkins, Edwin. Local time is a semimartingale. Z. Wahrsch. Verw. Gebiete 60 (1982), no. 1, 79–117.
  • Revuz, Daniel; Yor, Marc. Continuous martingales and Brownian motion. Third edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293. Springer-Verlag, Berlin, 1999. xiv+602 pp. ISBN: 3-540-64325-7
  • Strassen, V. An invariance principle for the law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 1964 211–226 (1964).
  • Zhang, Li-Xin. The strong approximation for the Kesten-Spitzer random walk. Statist. Probab. Lett. 53 (2001), no. 1, 21–26.