Electronic Communications in Probability

The critical branching random walk in a random environment dies out

Olivier Garet and Régine Marchand

Full-text: Open access

Abstract

We study the possibility for branching random walks in random environment (BRWRE) to survive. The particles perform simple symmetric random walks on the $d$-dimensional integer lattice, while at each time unit, they split into independent copies according to time-space i.i.d. offspring distributions.  As noted by Comets and Yoshida, the BRWRE is naturally associated with the directed polymers in random environment (DPRE), for which the quantity $\Psi$ called the free energy is well studied.  Comets and Yoshida proved that there is no survival when $\Psi<0$ and that survival is possible when $\Psi>0$. We proved here that, except for degenerate cases, the BRWRE always die when $\Psi=0$. This solves a conjecture of Comets and Yoshida.

Article information

Source
Electron. Commun. Probab., Volume 18 (2013), paper no. 9, 15 pp.

Dates
Accepted: 31 January 2013
First available in Project Euclid: 7 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ecp/1465315548

Digital Object Identifier
doi:10.1214/ECP.v18-2438

Mathematical Reviews number (MathSciNet)
MR3019672

Zentralblatt MATH identifier
1306.60153

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 82B43: Percolation [See also 60K35]

Keywords
branching random walk random environment survival critical behavior renormalization block construction

Rights
This work is licensed under a Creative Commons Attribution 3.0 License.

Citation

Garet, Olivier; Marchand, Régine. The critical branching random walk in a random environment dies out. Electron. Commun. Probab. 18 (2013), paper no. 9, 15 pp. doi:10.1214/ECP.v18-2438. https://projecteuclid.org/euclid.ecp/1465315548


Export citation

References

  • Bezuidenhout, Carol; Grimmett, Geoffrey. The critical contact process dies out. Ann. Probab. 18 (1990), no. 4, 1462–1482.
  • Broman, Erik I. Stochastic domination for a hidden Markov chain with applications to the contact process in a randomly evolving environment. Ann. Probab. 35 (2007), no. 6, 2263–2293.
  • Comets, Francis; Yoshida, Nobuo. Branching random walks in space-time random environment: survival probability, global and local growth rates. J. Theoret. Probab. 24 (2011), no. 3, 657–687.
  • R. Fukushima and N. Yoshida. On exponential growth for a certain class of linear systems. ALEA Lat. Am. J. Probab. Math. Stat., 9(2):323–336, 2012.
  • Olivier Garet and Régine Marchand. Growth of a population of bacteria in a dynamical hostile environment, ARXIV1010.4618 preprint, 2012.
  • Grimmett, Geoffrey. Percolation. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6
  • Harris, T. E. A lower bound for the critical probability in a certain percolation process. Proc. Cambridge Philos. Soc. 56 1960 13–20.
  • Hu, Yueyun; Yoshida, Nobuo. Localization for branching random walks in random environment. Stochastic Process. Appl. 119 (2009), no. 5, 1632–1651.
  • Liggett, Thomas M. Stochastic interacting systems: contact, voter and exclusion processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 324. Springer-Verlag, Berlin, 1999. xii+332 pp. ISBN: 3-540-65995-1
  • Steif, Jeffrey E.; Warfheimer, Marcus. The critical contact process in a randomly evolving environment dies out. ALEA Lat. Am. J. Probab. Math. Stat. 4 (2008), 337–357.
  • Yao, Qiang; Chen, Xinxing. The complete convergence theorem holds for contact processes in a random environment on $\Bbb{Z}^ d\times\Bbb{Z}^ +$. Stochastic Process. Appl. 122 (2012), no. 9, 3066–3100.
  • Yoshida, Nobuo. Central limit theorem for branching random walks in random environment. Ann. Appl. Probab. 18 (2008), no. 4, 1619–1635.