Open Access
2012 Recurrence of the $\mathbb{Z}^d$-valued infinite snake via unimodularity
Itai Benjamini, Nicolas Curien
Author Affiliations +
Electron. Commun. Probab. 17: 1-10 (2012). DOI: 10.1214/ECP.v17-1700

Abstract

We use the concept of unimodular random graph to show that the branching simple random walk on $\mathbb{Z}^{d}$ indexed by a critical geometric Galton-Watson tree conditioned to survive is recurrent if and only if $d \leq 4$.

Citation

Download Citation

Itai Benjamini. Nicolas Curien. "Recurrence of the $\mathbb{Z}^d$-valued infinite snake via unimodularity." Electron. Commun. Probab. 17 1 - 10, 2012. https://doi.org/10.1214/ECP.v17-1700

Information

Accepted: 2 January 2012; Published: 2012
First available in Project Euclid: 7 June 2016

zbMATH: 1244.60085
MathSciNet: MR2872570
Digital Object Identifier: 10.1214/ECP.v17-1700

Subjects:
Primary: 60J80

Keywords: Galton-Watson trees , random snake , recurrence

Back to Top