Electronic Communications in Probability
- Electron. Commun. Probab.
- Volume 16 (2011), paper no. 29, 304-313.
A Reflection Type Problem for the Stochastic 2-D Navier-Stokes Equations with Periodic Conditions
Viorel Barbu, Giuseppe Da Prato, and Luciano Tubaro
Abstract
We prove the existence of a solution for the Kolmogorov equation associated with a reflection problem for 2-D stochastic Navier-Stokes equations with periodic spatial conditions and the corresponding stream flow in a closed ball of a Sobolev space of the torus $T^2$.
Article information
Source
Electron. Commun. Probab., Volume 16 (2011), paper no. 29, 304-313.
Dates
Accepted: 21 June 2011
First available in Project Euclid: 7 June 2016
Permanent link to this document
https://projecteuclid.org/euclid.ecp/1465261985
Digital Object Identifier
doi:10.1214/ECP.v16-1633
Mathematical Reviews number (MathSciNet)
MR2819654
Zentralblatt MATH identifier
05946901
Subjects
Primary: 76D05: Navier-Stokes equations [See also 35Q30]
Secondary: 60H15: Stochastic partial differential equations [See also 35R60] 76B03: Existence, uniqueness, and regularity theory [See also 35Q35] 76M35: Stochastic analysis
Keywords
2-D stochastic Navier-Stokes equations Gibbs measures Kolmogorov operator
Rights
This work is licensed under aCreative Commons Attribution 3.0 License.
Citation
Barbu, Viorel; Da Prato, Giuseppe; Tubaro, Luciano. A Reflection Type Problem for the Stochastic 2-D Navier-Stokes Equations with Periodic Conditions. Electron. Commun. Probab. 16 (2011), paper no. 29, 304--313. doi:10.1214/ECP.v16-1633. https://projecteuclid.org/euclid.ecp/1465261985