Electronic Communications in Probability

A relation between dimension of the harmonic measure, entropy and drift for a random walk on a hyperbolic space

Vincent Le Prince

Full-text: Open access


We establish in this paper an exact formula which links the dimension of the harmonic measure, the asymptotic entropy and the rate of escape for a random walk on a discrete subgroup of the isometry group of a Gromov hyperbolic space. This completes a result obtained by the author in a previous paper, where only an upper bound for the dimension was proved.

Article information

Electron. Commun. Probab., Volume 13 (2008), paper no. 5, 45-53.

Accepted: 2 February 2008
First available in Project Euclid: 6 June 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60G50: Sums of independent random variables; random walks
Secondary: 20F67: Hyperbolic groups and nonpositively curved groups 28D20: Entropy and other invariants 28A78: Hausdorff and packing measures

Random walk hyperbolic space harmonic measure entropy drift

This work is licensed under aCreative Commons Attribution 3.0 License.


Le Prince, Vincent. A relation between dimension of the harmonic measure, entropy and drift for a random walk on a hyperbolic space. Electron. Commun. Probab. 13 (2008), paper no. 5, 45--53. doi:10.1214/ECP.v13-1350. https://projecteuclid.org/euclid.ecp/1465233432

Export citation


  • A. Avez. Entropie des groupes de type fini. C. R. Acad. Sci. Paris, Sér. A 275 (1972), 1363–1366.
  • S. Blachère, P. Haïssinsky, and P. Mathieu. Harmonic measures versus quasiconformal measures for hyperbolic groups. preprint (2007).
  • M. Coornaert. Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov. Pacific Journal of Mathematics 159 (1993), 241–270.
  • M. Coornaert, T. Delzant, A. Papadopoulos. Géométrie et théorie des groupes : les groupes hyperboliques de Gromov. Lecture Notes in Math. 1441 (1990), Springer.
  • Y. Derriennic. Quelques applications du théorème ergodique sous-additif. Asterisque 74 (1980), 183–201.
  • E. Ghys, P. De La Harpe (eds.). Sur les Groupes Hyperboliques d'après Mikhael Gromov. Birkhäuser, Basel (1990).
  • M. Gromov. Hyperbolic groups. Essays in Group Theory (S.M. Gersten, ed.), MSRI Publ. 8 (1987), Springer, New York, 75–263.
  • V. A. Kaimanovich. Hausdorff dimension of the harmonic measure on trees. Ergod. Th. & Dynam. Sys. 18 (1998), 631–660.
  • V. A. Kaimanovich. The Poisson formula for groups with hyperbolic properties. Annals of Mathematics 152 (2000), 659–692.
  • F. Ledrappier. Une relation entre entropie, dimension et exposant pour certaines marches aléatoires. C. R. Acad. Sci. Paris, Sér. I 296 (1983), 369–372.
  • V. Le Prince. Dimensional properties of the harmonic measure for a random walk on a hyperbolic group. Trans. of the AMS 359 (2007), 2881–2898.
  • Ya. B. Pesin. Dimension theory in dynamical systems. Chicago Lect. Notes in Math. (1997).
  • L. S. Young. Dimension, entropy and Lyapunov exponents. Ergod. Th. & Dynam. Sys. 2 (1982), 109–124.