Electronic Communications in Probability

Threshold phenomena on product spaces: BKKKL revisited (once more)

Raphaël Rossignol

Full-text: Open access

Abstract

We revisit the work of Bourgain et al. (1992) - referred to as "BKKKL" in the title - about influences on Boolean functions in order to give a precise statement of threshold phenomenon on the product space $\{1,...,r\}^N$, generalizing one of the main results of Talagrand (1994).

Article information

Source
Electron. Commun. Probab., Volume 13 (2008), paper no. 4, 35-44.

Dates
Accepted: 19 January 2008
First available in Project Euclid: 6 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ecp/1465233431

Digital Object Identifier
doi:10.1214/ECP.v13-1344

Mathematical Reviews number (MathSciNet)
MR2372835

Zentralblatt MATH identifier
1189.60071

Subjects
Primary: 60F20: Zero-one laws
Secondary: 28A35: Measures and integrals in product spaces 60E15: Inequalities; stochastic orderings

Keywords
Threshold phenomenon approximate zero-one law influences

Rights
This work is licensed under aCreative Commons Attribution 3.0 License.

Citation

Rossignol, Raphaël. Threshold phenomena on product spaces: BKKKL revisited (once more). Electron. Commun. Probab. 13 (2008), paper no. 4, 35--44. doi:10.1214/ECP.v13-1344. https://projecteuclid.org/euclid.ecp/1465233431


Export citation

References

  • Benaim, Michel; Rossignol, Raphaël. Exponential concentration for First Passage Percolation through modified Poincaré inequalities. To appear in Annales de l'IHP. arXiv.org:math.PR/0609730
  • Bollobás, Béla; Riordan, Oliver. The critical probability for random Voronoi percolation in the plane is 1/2. Probab. Theory Related Fields 136 (2006), no. 3, 417–468.
  • Bollobás, Béla; Riordan, Oliver. The critical probability for random Voronoi percolation in the plane is 1/2. Probab. Theory Related Fields 136 (2006), no. 3, 417–468.
  • Bollobás, Béla; Riordan, Oliver. Sharp thresholds and percolation in the plane. Random Structures Algorithms 29 (2006), no. 4, 524–548.
  • Bollobás, Béla; Riordan, Oliver. A short proof of the Harris-Kesten theorem. Bulletin of the London Mathematical Society 38 (2006), no. 3, 470–484.
  • Bourbaki, Nicolas. Eléments de mathématique. IX. Première partie: Les structures fondamentales de l'analyse. Livre IV: Fonctions d'une variable réelle (théorie élémentaire). Chapitre I: Dérivées. Chapitre II: Primitives et intégrales. Chapitre III: Fonctions élémentaires}. Actualités Sci. Ind., (1949), no. 1074. Hermann et Cie., Paris.
  • Bourgain, Jean; Kahn, Jeff; Kalai, Gil; Katznelson, Yitzhak; Linial, Nathan. The influence of variables in product spaces. Israel J. Math. 77 (1992), no. 1-2, 55–64.
  • Falik, Dvir; Samorodnitsky, Alex. Edge-isoperimetric inequalities and influences. Combin. Probab. Comput. 16 (2007), no. 5, 693–712.
  • Friedgut, Ehud. Influences in product spaces: KKL and BKKKL revisited. Combin. Probab. Comput. 13 (2004), no. 1, 17–29.
  • Friedgut, Ehud; Kalai, Gil. Every monotone graph property has a sharp threshold. Proc. Amer. Math. Soc. 124 (1996), no. 10, 2993–3002.
  • Grimmett, Geoffrey. Percolation.Second edition.Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6
  • Hatami, H. (2006). Influences and decision trees. arXiv.org:math/0612405.
  • Kahn, Jeff; Kalai, Gil; Linial, Nathan. The influence of variables on Boolean functions. In Proc. 29-th Ann. Symp. on Foundations of Comp. Sci., (1988), pages 68–80. IEEE, Washington.
  • Margulis, G. A. Probabilistic characteristics of graphs with large connectivity.(Russian) Problemy Peredav ci Informacii 10 (1974), no. 2, 101–108.
  • Paroissin, C. and Ycart, B. (2003). Zero-one law for the non-availability of multistate repairable systems. Int. J. of Reliability, Quality and Safety Engineering, 10(3):311–322.
  • Rossignol, Raphaël. Threshold for monotone symmetric properties through a logarithmic Sobolev inequality. Ann. Probab. 34 (2006), no. 5, 1707–1725.
  • Russo, Lucio. An approximate zero-one law. Z. Wahrsch. Verw. Gebiete 61 (1982), no. 1, 129–139.
  • Talagrand, Michel. On Russo's approximate zero-one law. Ann. Probab. 22 (1994), no. 3, 1576–1587.
  • van den Berg, Rob. Approximate zero-one laws and sharpness of the percolation transition in a class of models including 2d Ising percolation. To appear in Ann. Probab. arXiv.org:0707.2077.