Electronic Communications in Probability

Stationary random graphs on $Z$ with prescribed iid degrees and finite mean connections

Maria Deijfen and Johan Jonasson

Full-text: Open access

Abstract

Let $F$ be a probability distribution with support on the non-negative integers. A model is proposed for generating stationary simple graphs on $Z$ with degree distribution $F$ and it is shown for this model that the expected total length of all edges at a given vertex is finite if $F$ has finite second moment. It is not hard to see that any stationary model for generating simple graphs on $Z$ will give infinite mean for the total edge length per vertex if $F$ does not have finite second moment. Hence, finite second moment of $F$ is a necessary and sufficient condition for the existence of a model with finite mean total edge length.

Article information

Source
Electron. Commun. Probab., Volume 11 (2006), paper no. 33, 336-346.

Dates
Accepted: 5 December 2006
First available in Project Euclid: 4 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ecp/1465058876

Digital Object Identifier
doi:10.1214/ECP.v11-1239

Mathematical Reviews number (MathSciNet)
MR2274528

Zentralblatt MATH identifier
1127.05093

Subjects
Primary: 05C80: Random graphs [See also 60B20]
Secondary: 60G50: Sums of independent random variables; random walks

Keywords
Random graphs degree distribution stationary model

Rights
This work is licensed under aCreative Commons Attribution 3.0 License.

Citation

Deijfen, Maria; Jonasson, Johan. Stationary random graphs on $Z$ with prescribed iid degrees and finite mean connections. Electron. Commun. Probab. 11 (2006), paper no. 33, 336--346. doi:10.1214/ECP.v11-1239. https://projecteuclid.org/euclid.ecp/1465058876


Export citation

References

  • Baum, E. and Katz, M (1965): Convergence rates in the law of large numbers, Trans. Amer. Math. Soc. 120 108-123,
  • Britton, T., Deijfen, M. and Martin-Löf, A. (2005): Generating simple random graphs with prescribed degree distribution, J. Stat. Phys. 124, 1377-1397.
  • Chung, F. and Lu, L. : Connected components in random graphs with given degrees sequences Ann. Comb. 6, 125-145,
  • Chung, F. and Lu, L. : The average distances in random graphs with given expected degrees, Proc. Natl. Acad. Sci. 99, 15879-15882,
  • Deijfen, M and Meester, R. (2006): Generating stationary random graphs on Z with prescribed iid degrees Adv. Appl. Probab. 38, 287-298.
  • Erdös, P. and Renyi, A. (1959): On random graphs, Publ. Math. 6, 290-297,
  • Hofstad, R. van der, Hooghiemstra, G. and Znamenski, D. (2005): Random graphs with arbitrary iid degrees, preprint, (www.win.tue.nl/~rhofstad).
  • Holroyd, A.E. and Peres, Y. (2003): Trees and Matchings from Point Processes, Electr. Commun. Probab. 8, 17-27.
  • Holroyd, A.E. and Peres, Y. (2005): Extra heads and invariant allocations, Ann. Probab. 33, 31-52,
  • Molloy, M. and Reed, B. (1995): A critical point for random graphs with a given degree sequence, Rand. Struct. Alg. 6, 161-179,
  • Molloy, M. and Reed, B. (1998): The size of the giant component of a random graphs with a given degree sequence, Comb. Probab. Comput. 7, 295-305,
  • Newman (2003): The structure and function of complex networks, SIAM Rev. 45, 167-256,
  • Wormald, N.C. (1978): Some problems in the enumeration of labelled graphsm, Doctoral thesis, Newcastle University.