Electronic Communications in Probability

The Center of Mass of the ISE and the Wiener Index of Trees

Svante Janson and Philippe Chassaing

Full-text: Open access

Abstract

We derive the distribution of the center of mass S of the integrated superBrownian excursion (ISE) from the asymptotic distribution of the Wiener index for simple trees. Equivalently, this is the distribution of the integral of a Brownian snake. A recursion formula for the moments and asymptotics for moments and tail probabilities are derived.

Article information

Source
Electron. Commun. Probab., Volume 9 (2004), paper no. 20, 178-187.

Dates
Accepted: 30 December 2004
First available in Project Euclid: 26 May 2016

Permanent link to this document
https://projecteuclid.org/euclid.ecp/1464286700

Digital Object Identifier
doi:10.1214/ECP.v9-1088

Mathematical Reviews number (MathSciNet)
MR2108865

Zentralblatt MATH identifier
1060.60095

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 60J85: Applications of branching processes [See also 92Dxx]

Keywords
ISE Brownian snake Brownian excursion center of mass Wiener index

Rights
This work is licensed under aCreative Commons Attribution 3.0 License.

Citation

Janson, Svante; Chassaing, Philippe. The Center of Mass of the ISE and the Wiener Index of Trees. Electron. Commun. Probab. 9 (2004), paper no. 20, 178--187. doi:10.1214/ECP.v9-1088. https://projecteuclid.org/euclid.ecp/1464286700


Export citation

References

  • D. Aldous. Tree-based models for random distribution of mass. J. Statist. Phys. 73 (1993), 625-641.
  • D. Aldous. Brownian excursions, critical random graphs and the multiplicative coalescent. Ann. Probab. 25 (1997), 812-854.
  • J. Ambjorn, B. Durhuus, T. Jónsson. Quantum gravity, a statistical field theory approach. Cambridge Monographs on Mathematical Physics (1997) Cambridge University Press.
  • N.H. Bingham, C.M. Goldie, J.L. Teugels. Regular variation. Encyclopedia of Mathematics and its Applications 27 (1989) Cambridge University Press.
  • C. Borgs, J. Chayes, R. van der Hofstad, G. Slade. Mean-field lattice trees. On combinatorics and statistical mechanics. Ann. Comb. 3 (1999), 205-221.
  • P. Chassaing, G. Schaeffer. Random planar lattices and integrated superBrownian excursion. Probab. Theory Related Fields 128 (2004), 161-212.
  • L. Davies. Tail probabilities for positive random variables with entire characteristic functions of very regular growth. Z. Angew. Math. Mech. 56 (1976), T334-T336.
  • J.F. Delmas. Computation of moments for the length of the one dimensional ISE support. Electron. J. Probab. 8 (2003), 15 pp..
  • A. Dembo, O. Zeitouni. Large deviations techniques and applications. Applications of Mathematics 38 (1998) Springer-Verlag.
  • A. Dembo, O. Zeitouni. Large deviations for random distribution of mass. Random discrete structures (Minneapolis, MN, 1993), 1989. IMA Vol. Math. Appl.76 (1996), 45-53.
  • E. Derbez, G. Slade. The scaling limit of lattice trees in high dimensions. Comm. Math. Phys. 193 (1998), 69-104.
  • S. Janson. The Wiener index of simply generated random trees. Random Structures Algorithms 22 (2003), 337-358.
  • Y. Kasahara. Tauberian theorems of exponential type. J. Math. Kyoto Univ. 18 (1978), 209-219.
  • J.F. Le Gall. Spatial branching processes, random snakes and partial differential equations. Lectures in Mathematics ETH Zurich (1999) Birkhauser Verlag.
  • J.F. Marckert, A. Mokkadem. States spaces of the snake and its tour-convergence of the discrete snake. J. Theoret. Probab. 16 (2003), 1015-1046.
  • L. Serlet. A large deviation principle for the Brownian snake. Stochastic Process. Appl. 67 (1997), 101-115.
  • G. Slade. Scaling limits and super-Brownian motion. Notices Amer. Math. Soc. 49 (2002), 1056-1067.
  • J. Spencer. Enumerating graphs and Brownian motion. Comm. Pure Appl. Math. 50 (1997), 291-294.
  • E. M. Wright. The number of connected sparsely edged graphs. J. Graph Theory 1 (1977), 317-330.