Electronic Communications in Probability

Ergodicity of PCA: Equivalence between Spatial and Temporal Mixing Conditions

Pierre-Yves Louis

Full-text: Open access

Abstract

For a general attractive Probabilistic Cellular Automata on $S^{\mathbb{Z}^d}$, we prove that the (time-) convergence towards equilibrium of this Markovian parallel dynamics, exponentially fast in the uniform norm, is equivalent to a condition ($\mathcal{A}$). This condition means the exponential decay of the influence from the boundary for the invariant measures of the system restricted to finite boxes. For a class of reversible PCA dynamics on $\{-1;+1\}^{\mathbb{Z}^d}$ with a naturally associated Gibbsian potential $\varphi$, we prove that a (spatial-) weak mixing condition ($\mathcal{WM}$) for $\varphi$ implies the validity of the assumption ($\mathcal{A}$); thus exponential (time-) ergodicity of these dynamics towards the unique Gibbs measure associated to $\varphi$ holds. On some particular examples we state that exponential ergodicity holds as soon as there is no phase transition.

Article information

Source
Electron. Commun. Probab. Volume 9 (2004), paper no. 13, 119-131.

Dates
Accepted: 7 October 2004
First available in Project Euclid: 26 May 2016

Permanent link to this document
https://projecteuclid.org/euclid.ecp/1464286693

Digital Object Identifier
doi:10.1214/ECP.v9-1116

Mathematical Reviews number (MathSciNet)
MR2108858

Zentralblatt MATH identifier
1059.60098

Subjects
Primary: 60G60: Random fields
Secondary: 37B15: Cellular automata [See also 68Q80] 37H99: None of the above, but in this section 60J10 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 68Q80: Cellular automata [See also 37B15] 82C20: Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs 82C26: Dynamic and nonequilibrium phase transitions (general)

Rights
This work is licensed under a Creative Commons Attribution 3.0 License.

Citation

Louis, Pierre-Yves. Ergodicity of PCA: Equivalence between Spatial and Temporal Mixing Conditions. Electron. Commun. Probab. 9 (2004), paper no. 13, 119--131. doi:10.1214/ECP.v9-1116. https://projecteuclid.org/euclid.ecp/1464286693


Export citation

References

  • Dai Pra, Paolo; Louis, Pierre-Yves; Roe lly, Sylvie. Stationary measures and phase transition for a class of probabilistic cellular automata. ESAIM Probab. Statist. 6 (2002), 89–104.
  • de Jong, Hans; Maes, Christian. Extended application of constructive criteria for ergodicity of interacting particle systems. Internat. J. Modern Phys. C 7 (1996), no. 1, 1–18.
  • Dyer, Martin; Sinclair, Alistair; Vigoda, Eric; Weitz, Dror. Mixing in time and space for lattice spin systems: a combinatorial view. Random Structures Algorithms 24 (2004), no. 4, 461–479. MR2060631
  • Ferrari, P. A.. Ergodicity for a class of probabilistic cellular automata. Rev. Mat. Apl. 12 (1991), no. 2, 93–102.
  • Higuchi, Yasunari. Coexistence of infinite $(*)$-clusters. II. Ising percolation in two dimensions. Probab. Theory Related Fields 97 (1993), no. 1-2, 1–33.
  • Holley, Richard. Possible rates of convergence in finite range, attractive spin systems. Particle systems, random media and large deviations (Brunswick, Maine, 1984), 215–234, Contemp. Math., 41, Amer. Math. Soc., Providence, RI, 1985.
  • Ignatyuk, I. A.; Malyshev, V. A. Cluster expansion for locally interacting Markov chains.(Russian) Vestnik Moskov. Univ. Ser. I Mat. Mekh. 1988, no. 5, 3–7, 103.
  • Kozlov, O.; Vasilyev, N. Reversible Markov chains with local interaction. Multicomponent random systems, pp. 451–469, Adv. Probab. Related Topics, 6, Dekker, New York, 1980.
  • Lebowitz, Joel L.; Maes, Christian; Speer, Eugene R. Statistical mechanics of probabilistic cellular automata. J. Statist. Phys. 59 (1990), no. 1-2, 117–170.
  • Louis, Pierre-Yves. Automates Cellulaires Probabilistes: mesures stationnaires, mesures de Gibbs associées et ergodicité. PhD thesis, Université de Lille 1 and Politecnico di Milano (2002). URL: http://tel.ccsd.cnrs.fr/documents/archives0/00/00/22/45/index_fr.html
  • Louis, Pierre-Yves. Increasing coupling for probabilistic cellular automata Preprint 2004/04 Potsdam Universität (2004)
  • Maes, Christian; Shlosman, Senya B. Ergodicity of probabilistic cellular automata: a constructive criterion. Comm. Math. Phys. 135 (1991), no. 2, 233–251.
  • Malyshev, V. A.; Minlos, R. A. Gibbs random fields. Cluster expansions. Translated from the Russian by R. Koteck'y and P. Holick'y. Mathematics and its Applications (Soviet Series), 44. Kluwer Academic Publishers Group, Dordrecht, 1991. xiv+248 pp. ISBN: 0-7923-0232-X
  • Martinelli, F.; Olivieri, E. Approach to equilibrium of Glauber dynamics in the one phase region. I. The attractive case. Comm. Math. Phys. 161 (1994), no. 3, 447–486.
  • Vasershtein, L. N. Markov processes over denumerable products of spaces describing large system of automata.(Russian); translated from Problemy Peredav ci Informacii 5 (1969), no. 3, 64–72 Problems of Information Transmission 5 (1969), no. 3, 47–52
  • Vasilyev, N. B. Bernoulli and Markov stationary measures in discrete local interactions. Developments in statistics, Vol. 1, pp. 99–112, Academic Press, New York, 1978.