Electronic Communications in Probability

Perfect Simulation from the Quicksort Limit Distribution

Luc Devroye, James Fill, and Ralph Neininger

Full-text: Open access


The weak limit of the normalized number of comparisons needed by the Quicksort algorithm to sort n randomly permuted items is known to be determined implicitly by a distributional fixed-point equation. We give an algorithm for perfect random variate generation from this distribution.

Article information

Electron. Commun. Probab., Volume 5 (2000), paper no. 12, 95-99.

Accepted: 5 June 2000
First available in Project Euclid: 2 March 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 65C10: Random number generation
Secondary: 65C05: Monte Carlo methods 68U20: Simulation [See also 65Cxx] 11K45: Pseudo-random numbers; Monte Carlo methods

Quicksort random variate generation simulation perfect simulation rejection method Monte Carlo method fixed-point equation

This work is licensed under aCreative Commons Attribution 3.0 License.


Devroye, Luc; Fill, James; Neininger, Ralph. Perfect Simulation from the Quicksort Limit Distribution. Electron. Commun. Probab. 5 (2000), paper no. 12, 95--99. doi:10.1214/ECP.v5-1024. https://projecteuclid.org/euclid.ecp/1456943505

Export citation


  • Cramer, M. (1996), A note concerning the limit distribution of the quicksort algorithm, RAIRO Inform. Théor. Appl. 30, 195-207.
  • Devroye, L. (1986), Nonuniform Random Variate Generation. Springer-Verlag, New York.
  • Devroye, L. (1999), Simulating perpetuities.
  • Fill, J. A. (1996), On the distribution for binary search trees under the random permutation model, Random Structures Algorithms 8, 1-25.
  • Fill, J. A. and Janson, S. (2000), Smoothness and decay properties of the limiting Quicksort density function. To apppear in a book edited by D. Gardy and A. Mokkadem, published by Birkhäuser, and based on the Colloquium on Mathematics and Computer Science: Algorithms, Trees, Combinatorics and Probabilities (University of Versailles-St. Quentin, Versailles, France, September, 2000).
  • Fill, J. A. and Janson, S. (2000), Quicksort asymptotics. Unpublished manuscript.
  • Hennequin, P. (1989), Combinatorial analysis of quicksort algorithm, RAIRO Inform. Théor. Appl. 23, 317-333.
  • Régnier, M. (1989), A limiting distribution for quicksort, RAIRO Inform. Théor. Appl. 23, 335-343.
  • Rösler, U. (1991), A limit theorem for `Quicksort', RAIRO Inform. Théor. Appl. 25, 85-100.
  • Tan, K. H., and Hadjicostas, P. (1995), Some properties of a limiting distribution in Quicksort, Statist. Probab. Lett., 25, 87-94.