Electronic Communications in Probability

A Reversibility Problem for Fleming-Viot Processes

Zenghu Li, Tokuzo Shiga, and Lihua Yao

Full-text: Open access

Abstract

Fleming-Viot processes incorporating mutation and selection are considered. It is well-known that if the mutation factor is of uniform type, the process has a reversible stationary distribution, and it has been an open problem to characterize the class of the processes that have reversible stationary distributions. This paper proves that if a Fleming-Viot process has a reversible stationary distribution, then the associated mutation operator is of uniform type.

Article information

Source
Electron. Commun. Probab., Volume 4 (1999), paper no. 9, 65-76.

Dates
Accepted: 22 July 1999
First available in Project Euclid: 2 March 2016

Permanent link to this document
https://projecteuclid.org/euclid.ecp/1456938431

Digital Object Identifier
doi:10.1214/ECP.v4-1007

Mathematical Reviews number (MathSciNet)
MR1711591

Zentralblatt MATH identifier
0926.60043

Subjects
Primary: 60G57: Random measures
Secondary: 60J60: Diffusion processes [See also 58J65] 92D15: Problems related to evolution

Keywords
Fleming-Viot processes measure-valueddiffusion reversibility Dirichlet space

Rights
This work is licensed under aCreative Commons Attribution 3.0 License.

Citation

Li, Zenghu; Shiga, Tokuzo; Yao, Lihua. A Reversibility Problem for Fleming-Viot Processes. Electron. Commun. Probab. 4 (1999), paper no. 9, 65--76. doi:10.1214/ECP.v4-1007. https://projecteuclid.org/euclid.ecp/1456938431


Export citation

References

  • D. A. Dawson, Measure-valued Markov Processes, Ecole d'Ete de Probabilites de Saint-Flour XXI-1991, Lecture Notes Math. 1541 (1994), 1-260, Springer-Verlag.
  • D. A. Dawson and K. J. Hochberg, Wandering random measures in the Fleming-Viot model, Ann. Probab. 10 (1982), 554-580.
  • S. N. Ethier and T. G. Kurtz, Fleming-Viot processes in population genetics, SIAM J. Contr. Opt. 31 (1993), 345-386.
  • W. H. Fleming and M. Viot, Some measure-valued Markov processes in population genetics theory, Indiana Univ. Math. J. 28 (1979), 817-843.
  • M. Fukushima, Dirichlet Forms and Markov Processes, North-Holland, 1980.
  • M. Fukushima, Y. Oshima and M. Takeda, Dirichlet forms and symmetric Markov processes, Walter de Gruyter, 1994.
  • T. Ohta and M. Kimura, A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population, Genet. Res. Camb. 22, (1973), 201-204.
  • J. B. Walsh, An Introduction to Stochastic Partial Differential Equations, Ecole d'Ete de Probabilites de Saint-Flour XIV-1984, Lect. Notes Math. 1180 (1986), 263-439, Springer-Verlag.