Electronic Communications in Probability

The random interchange process on the hypercube

Roman Kotecký, Piotr Miłoś, and Daniel Ueltschi

Full-text: Open access


We prove the occurrence of a phase transition accompanied by the emergence of cycles of diverging lengths in the random interchange process on the hypercube.

Article information

Electron. Commun. Probab., Volume 21 (2016), paper no. 4, 9 pp.

Received: 7 September 2015
Accepted: 7 January 2016
First available in Project Euclid: 3 February 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60C05: Combinatorial probability 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82B20: Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs 82B31: Stochastic methods

random interchange random stirring long cycles quantum Heisenberg model

Creative Commons Attribution 4.0 International License.


Kotecký, Roman; Miłoś, Piotr; Ueltschi, Daniel. The random interchange process on the hypercube. Electron. Commun. Probab. 21 (2016), paper no. 4, 9 pp. doi:10.1214/16-ECP4540. https://projecteuclid.org/euclid.ecp/1454514624

Export citation


  • [1] M. Aizenman, B. Nachtergaele, Geometric aspects of quantum spin states, Comm. Math. Phys. 164, 17–63 (1994).
  • [2] M. Ajtai, J. Komlos, E. Szemeredi, Largest random component of a k-cube, Combinatorica 2, 1–7 (1982).
  • [3] G. Alon, G. Kozma, The probability of long cycles in interchange processes, Duke Math. J. 162, 1567–1585 (2013).
  • [4] O. Angel, Random infinite permutations and the cyclic time random walk, Discrete Math. Theor. Comput. Sci. Proc., 9–16 (2003).
  • [5] N. Berestycki, Emergence of giant cycles and slowdown transition in random transpositions and $k$-cycles, Electr. J. Probab. 16, 152–173 (2011).
  • [6] N. Berestycki, G. Kozma, Cycle structure of the interchange process and representation theory, Bull. Soc. Math. France 143, 265–280 (2015).
  • [7] J.E. Björnberg, Large cycles in random permutations related to the Heisenberg model, Electr. Commun. Probab. 20, no. 55, 1–11 (2015).
  • [8] J.E. Björnberg, The free energy in a class of quantum spin systems and interchange processes, preprint, arXiv:1512.06986 (2015).
  • [9] B. Bollobás, Y. Kohayakawa, T. Łuczak, The evolution of random subgraphs of the cube, Random Struct. Algor. 3, 55–90 (1992).
  • [10] B. Bollobás, I. Leader, Exact face-isoperimetric inequalities, Europ. J. Combin. 11, 335–340 (1990).
  • [11] C. Goldschmidt, D. Ueltschi, P. Windridge, Quantum Heisenberg models and their probabilistic representations, in Entropy and the Quantum II, Contemp. Math. 552, 177–224 (2011); arXiv:1104.0983.
  • [12] A. Hammond, Sharp phase transition in the random stirring model on trees, Probab. Theory Rel. Fields 161, 429–448 (2015).
  • [13] O. Schramm, Compositions of random transpositions, Isr. J. Math. 147, 221–243 (2005).
  • [14] B. Tóth, Improved lower bound on the thermodynamic pressure of the spin $1/2$ Heisenberg ferromagnet, Lett. Math. Phys. 28, 75–84 (1993).
  • [15] D. Ueltschi, Random loop representations for quantum spin systems, J. Math. Phys. 54, 083301 (2013).