Electronic Communications in Probability

The random interchange process on the hypercube

Roman Kotecký, Piotr Miłoś, and Daniel Ueltschi

Full-text: Open access

Abstract

We prove the occurrence of a phase transition accompanied by the emergence of cycles of diverging lengths in the random interchange process on the hypercube.

Article information

Source
Electron. Commun. Probab., Volume 21 (2016), paper no. 4, 9 pp.

Dates
Received: 7 September 2015
Accepted: 7 January 2016
First available in Project Euclid: 3 February 2016

Permanent link to this document
https://projecteuclid.org/euclid.ecp/1454514624

Digital Object Identifier
doi:10.1214/16-ECP4540

Mathematical Reviews number (MathSciNet)
MR3485373

Zentralblatt MATH identifier
1338.60019

Subjects
Primary: 60C05: Combinatorial probability 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82B20: Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs 82B31: Stochastic methods

Keywords
random interchange random stirring long cycles quantum Heisenberg model

Rights
Creative Commons Attribution 4.0 International License.

Citation

Kotecký, Roman; Miłoś, Piotr; Ueltschi, Daniel. The random interchange process on the hypercube. Electron. Commun. Probab. 21 (2016), paper no. 4, 9 pp. doi:10.1214/16-ECP4540. https://projecteuclid.org/euclid.ecp/1454514624


Export citation

References

  • [1] M. Aizenman, B. Nachtergaele, Geometric aspects of quantum spin states, Comm. Math. Phys. 164, 17–63 (1994).
  • [2] M. Ajtai, J. Komlos, E. Szemeredi, Largest random component of a k-cube, Combinatorica 2, 1–7 (1982).
  • [3] G. Alon, G. Kozma, The probability of long cycles in interchange processes, Duke Math. J. 162, 1567–1585 (2013).
  • [4] O. Angel, Random infinite permutations and the cyclic time random walk, Discrete Math. Theor. Comput. Sci. Proc., 9–16 (2003).
  • [5] N. Berestycki, Emergence of giant cycles and slowdown transition in random transpositions and $k$-cycles, Electr. J. Probab. 16, 152–173 (2011).
  • [6] N. Berestycki, G. Kozma, Cycle structure of the interchange process and representation theory, Bull. Soc. Math. France 143, 265–280 (2015).
  • [7] J.E. Björnberg, Large cycles in random permutations related to the Heisenberg model, Electr. Commun. Probab. 20, no. 55, 1–11 (2015).
  • [8] J.E. Björnberg, The free energy in a class of quantum spin systems and interchange processes, preprint, arXiv:1512.06986 (2015).
  • [9] B. Bollobás, Y. Kohayakawa, T. Łuczak, The evolution of random subgraphs of the cube, Random Struct. Algor. 3, 55–90 (1992).
  • [10] B. Bollobás, I. Leader, Exact face-isoperimetric inequalities, Europ. J. Combin. 11, 335–340 (1990).
  • [11] C. Goldschmidt, D. Ueltschi, P. Windridge, Quantum Heisenberg models and their probabilistic representations, in Entropy and the Quantum II, Contemp. Math. 552, 177–224 (2011); arXiv:1104.0983.
  • [12] A. Hammond, Sharp phase transition in the random stirring model on trees, Probab. Theory Rel. Fields 161, 429–448 (2015).
  • [13] O. Schramm, Compositions of random transpositions, Isr. J. Math. 147, 221–243 (2005).
  • [14] B. Tóth, Improved lower bound on the thermodynamic pressure of the spin $1/2$ Heisenberg ferromagnet, Lett. Math. Phys. 28, 75–84 (1993).
  • [15] D. Ueltschi, Random loop representations for quantum spin systems, J. Math. Phys. 54, 083301 (2013).