15 July 2020 Prime numbers in two bases
Michael Drmota, Christian Mauduit, Joël Rivat
Duke Math. J. 169(10): 1809-1876 (15 July 2020). DOI: 10.1215/00127094-2019-0083

Abstract

We estimate the sums nxΛ(n)f(n)g(n)exp(2iπϑn) and nxμ(n)f(n)g(n)exp(2iπϑn), where Λ denotes the von Mangoldt function (and μ the Möbius function) whenever q1 and q2 are two coprime bases, f (resp., g) is a strongly q1-multiplicative (resp., strongly q2-multiplicative) function of modulus 1, and ϑ is a real number. The goal of this work is to introduce a new approach to study these sums involving simultaneously two different bases combining Fourier analysis, Diophantine approximation, and combinatorial arguments. We deduce from these estimates a prime number theorem (and Möbius orthogonality) for sequences of integers with digit properties in two coprime bases.

Citation

Download Citation

Michael Drmota. Christian Mauduit. Joël Rivat. "Prime numbers in two bases." Duke Math. J. 169 (10) 1809 - 1876, 15 July 2020. https://doi.org/10.1215/00127094-2019-0083

Information

Received: 19 July 2018; Revised: 5 November 2019; Published: 15 July 2020
First available in Project Euclid: 8 May 2020

zbMATH: 07226651
MathSciNet: MR4118642
Digital Object Identifier: 10.1215/00127094-2019-0083

Subjects:
Primary: 11A63
Secondary: 11L03 , 11L20 , 11N05 , 11N60

Keywords: exponential sums , prime numbers , q-additive functions

Rights: Copyright © 2020 Duke University Press

Vol.169 • No. 10 • 15 July 2020
Back to Top