Duke Mathematical Journal

The Fyodorov–Bouchaud formula and Liouville conformal field theory

Guillaume Remy

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In a remarkable paper in 2008, Fyodorov and Bouchaud conjectured an exact formula for the density of the total mass of (subcritical) Gaussian multiplicative chaos (GMC) associated to the Gaussian free field (GFF) on the unit circle. In this paper we will give a proof of this formula. In the mathematical literature this is the first occurrence of an explicit probability density for the total mass of a GMC measure. The key observation of our proof is that the negative moments of the total mass of GMC determine its law and are equal to one-point correlation functions of Liouville conformal field theory in the disk recently defined by Huang, Rhodes, and Vargas. The rest of the proof then consists in implementing rigorously the framework of conformal field theory (Belavin–Polyakov–Zamolodchikov equations for degenerate field insertions) in a probabilistic setting to compute the negative moments. Finally, we will discuss applications to random matrix theory, asymptotics of the maximum of the GFF, and tail expansions of GMC.

Article information

Source
Duke Math. J., Volume 169, Number 1 (2020), 177-211.

Dates
Received: 19 March 2018
Revised: 30 May 2019
First available in Project Euclid: 17 December 2019

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1576573213

Digital Object Identifier
doi:10.1215/00127094-2019-0045

Mathematical Reviews number (MathSciNet)
MR4047550

Zentralblatt MATH identifier
07198457

Subjects
Primary: 60G15: Gaussian processes
Secondary: 60G57: Random measures 60G60: Random fields 81T08: Constructive quantum field theory 81T40: Two-dimensional field theories, conformal field theories, etc.

Keywords
Gaussian free field Gaussian multiplicative chaos boundary Liouville field theory conformal field theory BPZ equations

Citation

Remy, Guillaume. The Fyodorov–Bouchaud formula and Liouville conformal field theory. Duke Math. J. 169 (2020), no. 1, 177--211. doi:10.1215/00127094-2019-0045. https://projecteuclid.org/euclid.dmj/1576573213


Export citation

References

  • [1] G. E. Andrews, R. Askey, and R. Roy, Special Functions, Encyclopedia Math. Appl. 71, Cambridge Univ. Press, Cambridge, 1999.
  • [2] L.-P. Arguin, “Extrema of log-correlated random variables: Principles and examples” in Advances in Disordered Systems, Random Processes and Some Applications, Cambridge Univ. Press, Cambridge, 2017, 166–204.
  • [3] L.-P. Arguin, D. Belius, and P. Bourgade, Maximum of the characteristic polynomial of random unitary matrices, Comm. Math. Phys. 349 (2017), no. 2, 703–751.
  • [4] J. Aru, Y. Huang, and X. Sun, Two perspectives of the 2D unit area quantum sphere and their equivalence, Comm. Math. Phys. 356 (2017), no. 1, 261–283.
  • [5] J. Aru, E. Powell, and A. Sepúlveda, Critical Liouville measure as a limit of subcritical measures, Electron. Commun. Probab. 24 (2019), no. 18.
  • [6] A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys. B 241 (1984), no. 2, 333–380.
  • [7] N. Berestycki, An elementary approach to Gaussian multiplicative chaos, Electron. Commun. Probab. 22 (2017), no. 27.
  • [8] M. Biskup and O. Louidor, Extreme local extrema of two-dimensional discrete Gaussian free field, Comm. Math. Phys. 345 (2016), no. 1, 271–304.
  • [9] R. Chhaibi, T. Madaule, and J. Najnudel, On the maximum of the C$\beta $E field, Duke Math. J. 167 (2018), no. 12, 2243–2345.
  • [10] R. Chhaibi and J. Najnudel, On the circle, $GMC^{\gamma }=\underleftarrow{\lim }C\beta E_{n}$ for $\gamma =\sqrt{\frac{2}{\beta }}\ (\gamma \leq 1)$, preprint, arXiv:1904.00578v2 [math.PR].
  • [11] F. David, A. Kupiainen, R. Rhodes, and V. Vargas, Liouville quantum gravity on the Riemann sphere, Comm. Math. Phys. 342 (2016), no. 3, 869–907.
  • [12] F. David, R. Rhodes, and V. Vargas, Liouville quantum gravity on complex tori, J. Math. Phys. 57 (2016), no. 2, art. ID 022302.
  • [13] J. Ding, R. Roy, and O. Zeitouni, Convergence of the centered maximum of log-correlated Gaussian fields, Ann. Probab. 45 (2017), no. 6A, 3886–3928.
  • [14] H. Dorn and H.-J. Otto, Two- and three-point functions in Liouville theory, Nuclear Phys. B 429 (1994), no. 2, 375–388.
  • [15] B. Duplantier, J. Miller, and S. Sheffield, Liouville quantum gravity as a mating of trees, preprint, arXiv:1409.7055v3 [math.PR].
  • [16] B. Duplantier, R. Rhodes, S. Sheffield, and V. Vargas, Critical Gaussian multiplicative chaos: Convergence of the derivative martingale, Ann. Probab. 42 (2014), no. 5, 1769–1808.
  • [17] B. Duplantier, R. Rhodes, S. Sheffield, and V. Vargas, Renormalization of critical Gaussian multiplicative chaos and KPZ relation, Comm. Math. Phys. 330 (2014), no. 1, 283–330.
  • [18] B. Duplantier and S. Sheffield, Liouville quantum gravity and KPZ, Invent. Math. 185 (2011), no. 2, 333–393.
  • [19] Y. V. Fyodorov and J.-P. Bouchaud, Freezing and extreme-value statistics in a random energy model with logarithmically correlated potential, J. Phys. A 41 (2008), no. 37, art. ID 372001.
  • [20] Y. V. Fyodorov, G. A. Hiary, and J. P. Keating, Freezing transition, characteristic polynomials of random matrices, and the Riemann zeta-function, Phys. Rev. Lett. 108 (2012), no. 17, art. ID 170601.
  • [21] Y. V. Fyodorov, P. Le Doussal, and A. Rosso, Statistical mechanics of logarithmic REM: Duality, freezing and extreme value statistics of $1/f$ noises generated by Gaussian free fields, J. Stat. Mech. Theory Exp. 2009, no. 10, art. ID P10005.
  • [22] Y. Huang, R. Rhodes, and V. Vargas, Liouville quantum gravity on the unit disk, Ann. Inst. Henri Poincaré Probab. Stat. 54 (2018), no. 3, 1694–1730.
  • [23] J.-P. Kahane, Sur le chaos multiplicatif, Ann. Sci. Math. Qué. 9 (1985), no. 2, 105–150.
  • [24] A. Kupiainen, R. Rhodes, and V. Vargas, Local conformal structure of Liouville quantum gravity, Comm. Math. Phys. 371 (2019), no. 3, 1005–1069.
  • [25] A. Kupiainen, R. Rhodes, and V. Vargas, Integrability of Liouville theory: Proof of the DOZZ formula, preprint, arXiv:1707.08785v3 [math.PR].
  • [26] H. Lacoin, R. Rhodes, and V. Vargas, Path integral for quantum Mabuchi K-energy, preprint, arXiv:1807.01758v1 [math.ph].
  • [27] G. Lambert, D. Ostrovsky, and N. Simm, Subcritical multiplicative chaos for regularized counting statistics from random matrix theory, Comm. Math. Phys. 360 (2018): no. 1, 1–54.
  • [28] M. Nikula, E. Saksman, and C. Webb, Multiplicative chaos and the characteristic polynomial of the CUE: The $L^{1}$-phase, preprint, arXiv:1806.01831v1 [math.PR].
  • [29] D. Ostrovsky, Mellin transform of the limit lognormal distribution, Comm. Math. Phys. 288 (2009), no. 1, 287–310.
  • [30] D. Ostrovsky, On Barnes beta distributions and applications to the maximum distribution of the 2D Gaussian free field, J. Stat. Phys. 164 (2016), no. 6, 1292–1317.
  • [31] E. Paquette and O. Zeitouni, The maximum of the CUE field, Int. Math. Res. Not. IMRN 2018, no. 16, 5028–5119.
  • [32] A. M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B 103 (1981), no. 3, 207–210.
  • [33] E. Powell, Critical Gaussian chaos: Convergence and uniqueness in the derivative normalisation, Electron. J. Probab. 23 (2018), no. 31.
  • [34] G. Remy, Liouville quantum gravity on the annulus, J. Math. Phys. 59 (2018), no. 8, art. ID 082303.
  • [35] G. Remy and T. Zhu, The distribution of Gaussian multiplicative chaos on the unit interval, preprint, arXiv:1804.02942v3 [math.PR].
  • [36] R. Rhodes and V. Vargas, Gaussian multiplicative chaos and applications: a review, Probab. Surv. 11 (2014), 315–392.
  • [37] R. Rhodes and V. Vargas, “Gaussian multiplicative chaos and Liouville quantum gravity” in Stochastic Processes and Random Matrices, Oxford, Oxford Univ. Press, 2017, 548–577.
  • [38] R. Rhodes and V. Vargas, The tail expansion of Gaussian multiplicative chaos and the Liouville reflection coefficient, Ann. Probab. 47 (2019), no. 5, 3082–3107.
  • [39] E. Subag and O. Zeitouni, Freezing and decorated Poisson point processes, Comm. Math. Phys. 337 (2015), no. 1, 55–92.
  • [40] V. Vargas, Lecture notes on Liouville theory and the DOZZ formula, preprint, arXiv:1712.00829v1 [math.PR].
  • [41] C. Webb, The characteristic polynomial of a random unitary matrix and Gaussian multiplicative chaos: The $L^{2}$-phase, Electron. J. Probab. 20 (2015), no. 104.
  • [42] A. B. Zamolodchikov and A. B. Zamolodchikov, Conformal bootstrap in Liouville field theory,Nuclear Phys. B 477 (1996), no. 2, 577–605.