Duke Mathematical Journal

Diagonal actions in positive characteristic

Manfred Einsiedler, Elon Lindenstrauss, and Amir Mohammadi

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We prove positive-characteristic analogues of certain measure rigidity theorems in characteristic 0. More specifically, we give a classification result for positive entropy measures on quotients of SLd and a classification of joinings for higher-rank actions on simply connected, absolutely almost simple groups.

Article information

Source
Duke Math. J., Volume 169, Number 1 (2020), 117-175.

Dates
Received: 9 June 2017
Revised: 26 January 2019
First available in Project Euclid: 27 November 2019

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1574845213

Digital Object Identifier
doi:10.1215/00127094-2019-0038

Mathematical Reviews number (MathSciNet)
MR4047549

Zentralblatt MATH identifier
07198456

Subjects
Primary: 37A17: Homogeneous flows [See also 22Fxx]
Secondary: 20C25: Projective representations and multipliers 20G30: Linear algebraic groups over global fields and their integers

Keywords
diagonal actions positive characteristic measure classification

Citation

Einsiedler, Manfred; Lindenstrauss, Elon; Mohammadi, Amir. Diagonal actions in positive characteristic. Duke Math. J. 169 (2020), no. 1, 117--175. doi:10.1215/00127094-2019-0038. https://projecteuclid.org/euclid.dmj/1574845213


Export citation

References

  • [1] A. Borel, Linear Algebraic Groups, 2nd ed., Grad. Texts in Math. 126, Springer, New York, 1991.
  • [2] A. Borel and J. Tits, Groupes réductifs, Publ. Math. Inst. Hautes Études Sci. 27 (1965), 55–150.
  • [3] A. Borel and J. Tits, Éléments unipotents et sous-groupes paraboliques de groupes réductifs, I, Invent. Math. 12 (1971), 95–104.
  • [4] A. Borel and J. Tits, Homomorphismes “abstraits” de groupes algébriques simples, Ann. of Math. (2) 97 (1973), 499–571.
  • [5] B. Conrad, Finiteness theorems for algebraic groups over function fields, Compos. Math. 148 (2012), no. 2, 555–639.
  • [6] B. Conrad, O. Gabber, and G. Prasad, Pseudo-Reductive Groups, New Math. Monogr. 17, Cambridge Univ. Press, Cambridge, 2010.
  • [7] P. K. Draxl, Skew Fields, London Math. Soc. Lecture Note Ser. 81, Cambridge Univ. Press, Cambridge, 1983.
  • [8] M. Einsiedler and A. Ghosh, Rigidity of measures invariant under semisimple groups in positive characteristic, Proc. Lond. Math. Soc. (3) 100 (2010), no. 1, 249–268.
  • [9] M. Einsiedler and A. Katok, Invariant measures on ${G/\Gamma }$ for split simple Lie groups $G$, Comm. Pure Appl. Math. 56 (2003), no. 8, 1184–1221.
  • [10] M. Einsiedler and A. Katok, Rigidity of measures: The high entropy case and non-commuting foliations, Israel J. Math. 148 (2005), 169–238.
  • [11] M. Einsiedler, A. Katok, and E. Lindenstrauss, Invariant measures and the set of exceptions to Littlewood’s conjecture, Ann. of Math. (2) 164 (2006), no. 2, 513–560.
  • [12] M. Einsiedler and E. Lindenstrauss, Joinings of higher-rank diagonalizable actions on locally homogeneous spaces, Duke Math. J. 138 (2007), no. 2, 203–232.
  • [13] M. Einsiedler and E. Lindenstrauss, On measures invariant under diagonalizable actions: The rank-one case and the general low-entropy method, J. Mod. Dyn. 2 (2008), no. 1, 83–128.
  • [14] M. Einsiedler and E. Lindenstrauss, “Diagonal actions on locally homogeneous spaces” in Homogeneous Flows, Moduli Spaces and Arithmetic, Clay Math. Proc. 10, Amer. Math. Soc., Providence, 2010, 155–241.
  • [15] M. Einsiedler and E. Lindenstrauss, On measures invariant under tori on quotients of semisimple groups, Ann. of Math. (2) 181 (2015), no. 3, 993–1031.
  • [16] M. Einsiedler and E. Lindenstrauss, Joinings of higher-rank torus actions on homogeneous spaces, Publ. Math. Inst. Hautes Études Sci. 129 (2019), 83–127.
  • [17] M. Einsiedler and A. Mohammadi, A joinings classification and a special case of Raghunathan’s conjecture in positive characteristic, with an appendix by Kevin Wortman, J. Anal. Math. 116 (2012), 299–334.
  • [18] M. Einsiedler and T. Ward, Ergodic Theory with a View Towards Number Theory, Grad. Texts in Math. 259, Springer, London, 2010.
  • [19] H. Furstenberg, Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory 1 (1967), 1–49.
  • [20] P. Gille, Éléments unipotents des groupes algébriques semi-simples simplement connexes en caractéristique $p>0$, C. R. Math. Acad. Sci. Paris 328 (1999), no. 12, 1123–1128.
  • [21] E. Glasner, Ergodic Theory via Joinings, Math. Surveys Monogr. 101, Amer. Math. Soc., Providence, 2003.
  • [22] G. Harder, Minkowskische Reduktionstheorie über Funktionenkörpern, Invent. Math. 7 (1969), 33–54.
  • [23] M. J. Larsen and R. Pink, Finite subgroups of algebraic groups, J. Amer. Math. Soc. 24 (2011), no. 4, 1105–1158.
  • [24] F. Ledrappier and L.-S. Young, The metric entropy of diffeomorphisms, II: Relations between entropy, exponents and dimension, Ann. of Math. (2) 122 (1985), no. 3, 540–574.
  • [25] E. Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity, Ann. of Math. (2) 163 (2006), no. 1, 165–219.
  • [26] G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Ergeb. Math. Grenzgeb. (3) 17, Springer, Berlin, 1991.
  • [27] G. A. Margulis and G. M. Tomanov, Invariant measures for actions of unipotent groups over local fields on homogeneous spaces, Invent. Math. 116 (1994), no. 1–3, 347–392.
  • [28] A. Mohammadi and A. S. Golsefidy, Characteristic free measure rigidity for the action of solvable groups on homogeneous spaces, Geom. Funct. Anal. 28 (2018), no. 1, 179–227.
  • [29] R. Pink, Compact subgroups of linear algebraic groups, J. Algebra 206 (1998), no. 2, 438–504.
  • [30] V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, Pure Appl. Math. 139, Academic Press, Boston, 1994.
  • [31] G. Prasad, Elementary proof of a theorem of Bruhat-Tits-Rousseau and of a theorem of Tits, Bull. Soc. Math. France 110 (1982), no. 2, 197–202.
  • [32] M. Ratner, On measure rigidity of unipotent subgroups of semisimple groups, Acta Math. 165 (1990), no. 3–4, 229–309.
  • [33] M. Ratner, On Raghunathan’s measure conjecture, Ann. of Math. (2) 134 (1991), no. 3, 545–607.
  • [34] Y. Shalom, Invariant measures for algebraic actions, Zariski dense subgroups and Kazhdan’s property (T), Trans. Amer. Math. Soc. 351 (1999), no. 8, 3387–3412.
  • [35] T. A. Springer, Linear Algebraic Groups, reprint of the 19982nd ed., Mod. Birkhäuser Class., Birkhäuser, Boston, 2009.
  • [36] G. Tomanov, “Actions of maximal tori on homogeneous spaces” in Rigidity in Dynamics and Geometry (Cambridge, 2000), Springer, Berlin, 2002, 407–424.
  • [37] P. Walters, An Introduction to Ergodic Theory, Grad. Texts in Math. 79, Springer, New York, 1982.
  • [38] A. Weil, Basic Number Theory, Grundlehren Math. Wiss. 144, Springer, New York, 1967.