Duke Mathematical Journal

Tate cycles on some quaternionic Shimura varieties mod p

Yichao Tian and Liang Xiao

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let F be a totally real field in which a prime number p>2 is inert. We continue the study of the (generalized) Goren–Oort strata on quaternionic Shimura varieties over finite extensions of Fp. We prove that, when the dimension of the quaternionic Shimura variety is even, the Tate conjecture for the special fiber of the quaternionic Shimura variety holds for the cuspidal π-isotypical component, as long as the two unramified Satake parameters at p are not differed by a root of unity.

Article information

Source
Duke Math. J., Volume 168, Number 9 (2019), 1551-1639.

Dates
Received: 25 May 2017
Revised: 30 October 2018
First available in Project Euclid: 12 June 2019

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1560326497

Digital Object Identifier
doi:10.1215/00127094-2018-0068

Mathematical Reviews number (MathSciNet)
MR3961211

Zentralblatt MATH identifier
07097310

Subjects
Primary: 11G18: Arithmetic aspects of modular and Shimura varieties [See also 14G35]
Secondary: 14G35: Modular and Shimura varieties [See also 11F41, 11F46, 11G18] 14C25: Algebraic cycles 11F41: Automorphic forms on GL(2); Hilbert and Hilbert-Siegel modular groups and their modular and automorphic forms; Hilbert modular surfaces [See also 14J20]

Keywords
special fiber of Hibert modular varieties supersingular locus Tate conjecture Goren–Oort stratification

Citation

Tian, Yichao; Xiao, Liang. Tate cycles on some quaternionic Shimura varieties mod $p$. Duke Math. J. 168 (2019), no. 9, 1551--1639. doi:10.1215/00127094-2018-0068. https://projecteuclid.org/euclid.dmj/1560326497


Export citation

References

  • [1] M. Artin, A. Grothendieck, J. Verdier, Théorie de topos et cohomologie étale des schemas, Tome 3, Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Lecture Notes in Math. 305, Springer, Berlin, 1973.
  • [2] J.-L. Brylinski and J.-P. Labesse, Cohomologie d’intersection et fonctions L de certaines variétés de Shimura, Ann. Sci. Éc. Norm. Supér. (4) 17 (1984), no. 3, 361–412.
  • [3] R. Coleman, Classical and overconvergent modular forms, Invent. Math. 124 (1996), no. 1–3, 215–241.
  • [4] P. Deligne, “Travaux de Shimura” in Séminaire Bourbaki 1970/1971, no. 389, Lecture Notes in Math. 244, Springer, Berlin, 1971, 123–165.
  • [5] P. Deligne, “Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques” in Automorphic Forms, Representations and L-Functions (Corvallis, 1977), Part 2, Proc. Sympos. Pure Math. 33, Amer. Math. Soc., Providence, 1979, 247–289.
  • [6] P. Di Francesco, Meander determinants, Comm. Math. Phys. 191 (1998), no. 3, 543–583.
  • [7] W. Fulton, Intersection Theory, 2nd ed., Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin, 1998.
  • [8] J. Getz and H. Hahn, Algebraic cycles and Tate classes on Hilbert modular varieties, Int. J. Number Theory 10 (2014), no. 1, 161–176.
  • [9] E. Goren and F. Oort, Stratifications of Hilbert modular varieties, J. Algebraic Geom. 9 (2000), no. 1, 111–154.
  • [10] J. Graham and G. Lehrer, The representation theory of affine Temperley-Lieb algebras, Enseign. Math. (2) 44 (1998), no. 3–4, 173–218.
  • [11] A. Grothendieck, Cohomologie $l$-adique et fonctions $L$, Séminaire de Géometrie Algébrique du Bois-Marie 1965–1966 (SGA 5), Lecture Notes in Math. 589, Springer, Berlin, 1977.
  • [12] G. Harder, R. P. Langlands, and M. Rapoport, Algebraische Zyklen auf Hilbert-Blumenthal-Flächen, J. Reine Angew. Math. 366 (1986), 53–120.
  • [13] D. Helm, Towards a geometric Jacquet-Langlands correspondence for unitary Shimura varieties, Duke Math. J. 155 (2010), no. 3, 483–518.
  • [14] D. Helm, A geometric Jacquet-Langlands correspondence for $U(2)$ Shimura varieties, Israel J. Math. 187 (2012), 37–80.
  • [15] D. Helm, Y. Tian, and L. Xiao, Tate cycles on some unitary Shimura varieties mod $p$, Algebra Number Theory 11 (2017), no. 10, 2213–2288.,
  • [16] A. Ichino and K. Prasanna, Hodge classes and the Jacquet-Langlands correspondence, preprint, arXiv:1806.10563 [math.NT].
  • [17] M. Kisin, Integral models for Shimura varieties of abelian type, J. Amer. Math. Soc. 23 (2010), no. 4, 967–1012.
  • [18] C. Klingenberg, Die Tate-Vermutungen für Hilbert-Blumenthal-Flächen, Invent. Math. 89 (1987), no. 2, 291–318.
  • [19] A. Langer, On the Tate conjecture for Hilbert modular surfaces in finite characteristic, J. Reine Angew. Math. 570 (2004), 219–228.
  • [20] Y. Liu, Hirzebruch-Zagier cycles and twisted triple product Selmer groups, Invent. Math. 205 (2016), no. 3, 693–780.
  • [21] Y. Liu, Bounding cubic-triple product Selmer groups of elliptic curves, to appear in J. Eur. Math. Soc. (JEMS), preprint, arXiv:1511.08268v2 [math.NT].
  • [22] Y. Liu and Y. Tian, Supersingular locus of Hilbert modular varieties, arithmetic level raising, and Selmer groups, preprint, arXiv:1710.11492v2 [math.NT].
  • [23] J. Milne, “Canonical models of (mixed) Shimura varieties and automorphic vector bundles” in Automorphic Forms, Shimura Varieties, and L-Functions, Vol. I (Ann Arbor, 1988), Perspect. Math. 10, Academic Press, Boston, 1990, 283–414.
  • [24] A. Morin-Duchesne and Y. Saint-Aubin, A homomorphism between link and XXZ modules over the periodic Temperley-Lieb algebra, J. Phys. A 46 (2013), no. 28, art. ID 285207.
  • [25] V. Murty and D. Ramakrishnan, Period relations and the Tate conjecture for Hilbert modular surfaces, Invent. Math. 89 (1987), no. 2, 319–346.
  • [26] J. Nekovář, Eichler-Shimura relations and semisimplicity of étale cohomology of quaternionic Shimura varieties, Ann. Sci. Éc. Norm. Supér. (4) 51 (2018), no. 5, 1179–1252.
  • [27] D. Ramakrishnan, “Algebraic cycles on Hilbert modular fourfolds and poles of $L$-functions” in Algebraic Groups and Arithmetic (Mumbai, 2001), Narosa, New Delhi, 2004, 221–274.
  • [28] D. Reduzzi and L. Xiao, Partial Hasse invariants on splitting models of Hilbert modular varieties, Ann. Sci. Éc. Norm. Supér (4) 50 (2017), no. 3, 579–607.
  • [29] K. Ribet, Mod $p$ Hecke operators and congruences between modular forms, Invent. Math. 71 (1983), no. 1, 193–205.
  • [30] K. Ribet, “Bimodules and abelian surfaces” in Algebraic Number Theory, Adv. Stud. Pure Math. 17, Academic Press, Boston, 1989, 359–407.
  • [31] J. Tate, “Algebraic cycles and poles of zeta functions” in Arithmetical Algebraic Geometry (West Lafayette, 1963), Harper and Row, New York, 1965, 93–110.
  • [32] R. Taylor, On Galois representations associated to Hilbert modular forms, Invent. Math. 98 (1989), no. 2, 265–280.
  • [33] Y. Tian and L. Xiao, On Goren-Oort stratification for quaternionic Shimura varieties, Compos. Math. 152 (2016), no. 10, 2134–2220.
  • [34] Y. Tian and L. Xiao, $p$-adic cohomology and classicality of overconvergent Hilbert modular forms, Astérisque 382 (2016), 73–162.
  • [35] L. Xiao and X. Zhu, Cycles on modular varieties via geometric Satake, preprint, arXiv:1707.05700 [math.AG].
  • [36] C.-F. Yu, On the supersingular locus in Hilbert-Blumenthal $4$-folds, J. Algebraic Geom. 12 (2003), no. 4, 653–698.
  • [37] Z. Yun and W. Zhang, Shtukas and the Taylor expansion of $L$-functions, Ann. of Math. (2) 186 (2017), no. 3, 767–911.