Duke Mathematical Journal

Nonabelian Cohen–Lenstra moments

Melanie Matchett Wood

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

In this article, we give a conjecture for the average number of unramified G-extensions of a quadratic field for any finite group G. The Cohen–Lenstra heuristics are the specialization of our conjecture to the case in which G is abelian of odd order. We prove a theorem toward the function field analogue of our conjecture and give additional motivations for the conjecture, including the construction of a lifting invariant for the unramified G-extensions that takes the same number of values as the predicted average and an argument using the Malle–Bhargava principle. We note that, for even |G|, corrections for the roots of unity in Q are required, which cannot be seen when G is abelian.

Article information

Source
Duke Math. J., Volume 168, Number 3 (2019), 377-427.

Dates
Received: 22 February 2017
Revised: 6 July 2018
First available in Project Euclid: 29 January 2019

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1548730815

Digital Object Identifier
doi:10.1215/00127094-2018-0037

Mathematical Reviews number (MathSciNet)
MR3909900

Zentralblatt MATH identifier
07040613

Subjects
Primary: 11R29: Class numbers, class groups, discriminants
Secondary: 11R45: Density theorems

Keywords
unramified extensions Cohen–Lenstra class tower groups lifting invariants class groups

Citation

Wood, Melanie Matchett. Nonabelian Cohen–Lenstra moments. Duke Math. J. 168 (2019), no. 3, 377--427. doi:10.1215/00127094-2018-0037. https://projecteuclid.org/euclid.dmj/1548730815


Export citation

References

  • [1] J. D. Achter, The distribution of class groups of function fields, J. Pure Appl. Algebra 204 (2006), no. 2, 316–333.
  • [2] M. Adam and G. Malle, A class group heuristic based on the distribution of 1-eigenspaces in matrix groups, J. Number Theory 149 (2015), 225–235.
  • [3] B. Alberts, Cohen-Lenstra moments for some nonabelian groups, preprint, arXiv:1606.07867v2 [math.NT].
  • [4] B. Alberts and J. Klys, The distribution of ${{H}}_{8}$-extensions of quadratic fields, preprint, arXiv:1611.05595v2 [math.NT].
  • [5] E. Artin and J. Tate, Class Field Theory, Benjamin, New York, 1968.
  • [6] M. Artin, A. Grothendieck, and J.-L. Verdier, Théorie des topos et cohomologie étale des schémas, Tome 3, Séminaire de Géométrie Algébrique du Bois-Marie 1963– 1964 (SGA 4), Lecture Notes in Math. 305, Springer, New York, 1973.
  • [7] K. Belabas, A fast algorithm to compute cubic fields, Math. Comp. 66 (1997), no. 219, 1213–1237.
  • [8] K. Belabas and E. Fouvry, Discriminants cubiques et progressions arithmétiques, Int. J. Number Theory 6 (2010), no. 7, 1491–1529.
  • [9] H. U. Besche, B. Eick, and E. O’Brien, The SmallGroups Library—A GAP package, GAP Group, 2016, http://www.gap-system.org/Packages/sgl.html.
  • [10] M. Bhargava, The density of discriminants of quartic rings and fields, Ann. of Math. (2) 162 (2005), no. 2, 1031–1063.
  • [11] M. Bhargava, The density of discriminants of quintic rings and fields, Ann. of Math. (2) 172 (2010), no. 3, 1559–1591.
  • [12] M. Bhargava, Mass formulae for extensions of local fields, and conjectures on the density of number field discriminants, Int. Math. Res. Not. IMRN 2007, no. 17, art. ID rnm052.
  • [13] M. Bhargava, The geometric sieve and the density of squarefree values of invariant polynomials, preprint, arXiv:1402.0031v1 [math.NT].
  • [14] M. Bhargava, A. Shankar, and J. Tsimerman, On the Davenport– Heilbronn theorems and second order terms, Invent. Math. 193 (2013), no. 2, 439–499.
  • [15] M. Bhargava and I. Varma, On the mean number of 2-torsion elements in the class groups, narrow class groups, and ideal groups of cubic orders and fields, Duke Math. J. 164 (2015), no. 10, 1911–1933.
  • [16] M. Bhargava and I. Varma, The mean number of $3$-torsion elements in the class groups and ideal groups of quadratic orders, Proc. Lond. Math. Soc. (3) 112 (2016), no. 2, 235–266.
  • [17] M. Bhargava and M. M. Wood, The density of discriminants of $S_{3}$-sextic number fields, Proc. Amer. Math. Soc. 136 (2008), no. 5, 1581–1587.
  • [18] N. Boston and M. M. Wood, Non-abelian Cohen–Lenstra heuristics over function fields, Compos. Math. 153 (2017), no. 7, 1372–1390.
  • [19] J. Clancy, N. Kaplan, T. Leake, S. Payne, and M. M. Wood, On a Cohen–Lenstra heuristic for Jacobians of random graphs, J. Algebraic Combin. 42 (2015), 701–723.
  • [20] H. Cohen, F. Diaz y Diaz, and M. Olivier, Enumerating quartic dihedral extensions of $\mathbb{Q}$, Compos. Math. 133 (2002), no. 1, 65–93.
  • [21] H. Cohen and H. W. Lenstra, Jr., “Heuristics on class groups of number fields” in Number Theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983), Lecture Notes in Math. 1068, Springer, Berlin, 1984, 33–62.
  • [22] H. Cohn, The density of abelian cubic fields, Proc. Amer. Math. Soc. 5 (1954), 476–477.
  • [23] B. Datskovsky and D. J. Wright, Density of discriminants of cubic extensions, J. Reine Angew. Math. 386 (1988), 116–138.
  • [24] H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields, II, Proc. Roy. Soc. London Ser. A 322 (1971), no. 1551, 405–420.
  • [25] J. S. Ellenberg, A. Venkatesh, and C. Westerland, Homological stability for Hurwitz spaces and the Cohen-Lenstra conjecture over function fields, Ann. of Math. (2) 183 (2016), no. 3, 729–786.
  • [26] J. S. Ellenberg, A. Venkatesh, and C. Westerland, Homological stability for Hurwitz spaces and the Cohen-Lenstra conjecture over function fields, II, preprint, arXiv:1212.0923v2 [math.NT].
  • [27] E. Fouvry and J. Klüners, “Cohen–Lenstra heuristics of quadratic number fields” in Algorithmic Number Theory, Lecture Notes in Comput. Sci. 4076, Springer, Berlin, 2006, 40–55.
  • [28] C. Frei, D. Loughran, and R. Newton, The Hasse norm principle for abelian extensions, Amer. J. Math. 140 (2018), 1639–1685.
  • [29] GAP Group, GAP—Groups, Algorithms, and Programming, version 4.8.4, 2016, http://www.gap-system.org.
  • [30] D. Garton, Random matrices, the Cohen–Lenstra heuristics, and roots of unity, Algebra Number Theory 9 (2015), no. 1, 149–171.
  • [31] A. Grothendieck, Revêtements étales et groupe fondamental, Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1), Doc. Math. (Paris) 3, Soc. Math. France, Paris, 2003.
  • [32] J. Klüners, A counterexample to Malle’s conjecture on the asymptotics of discriminants, C. R. Math. Acad. Sci. Paris 340 (2005), no. 6, 411–414.
  • [33] J. Klys, Moments of unramified 2-group extensions of quadratic fields, preprint, arXiv:1710.00793v2 [math.NT].
  • [34] M. Litzkow, “Remote unix—turning idle workstations into cycle servers” in Proceedings of the Summer 1987 USENIX Conference, USENIX Assoc., Berkeley, 1987, 381–384.
  • [35] LMFDB Collaboration, The l-functions and modular forms database, http://www.lmfdb.org (accessed 1May 2018).
  • [36] S. Mäki, On the density of abelian number fields, Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 54 (1985).
  • [37] G. Malle, On the distribution of Galois groups, II, Experiment. Math. 13 (2004), no. 2, 129–135.
  • [38] G. Malle, Cohen–Lenstra heuristic and roots of unity, J. Number Theory 128 (2008), no. 10, 2823–2835.
  • [39] J. S. Milne, Arithmetic Duality Theorems, 2nd ed., BookSurge, Charleston, 2006.
  • [40] A. Mosunov and M. J. Jacobson, Jr., Unconditional class group tabulation of imaginary quadratic fields to |$\Delta $|$<2^{40}$, Math. Comp. 85 (2016), no. 300, 1983–2009.
  • [41] W. Narkiewicz, Number Theory, World Sci., Singapore, 1983.
  • [42] J. Neukirch, A. Schmidt, and K. Wingberg, Cohomology of Number Fields, Grundlehren Math. Wiss. 323, Springer, Berlin, 2000.
  • [43] PARI Group, PARI/GP, version 2.9.4, 2018, http://pari.math.u-bordeaux.fr.
  • [44] M. Romagny and S. Wewers, “Hurwitz spaces” in Groupes de Galois arithmétiques et différentiels, Sémin. Congr. 13, Soc. Math. France, Paris, 2006, 313–341.
  • [45] J.-P. Serre, Galois Cohomology, Springer Monogr. Math., Springer, Berlin, 2002.
  • [46] T. Taniguchi and F. Thorne, Secondary terms in counting functions for cubic fields, Duke Math. J. 162 (2013), no. 13, 2451–2508.
  • [47] T. Tannenbaum, D. Wright, K. Miller, and M. Livny, “Condor: A distributed job scheduler” in Beowulf Cluster Computing with Linux, MIT Press, Cambridge, 2002.
  • [48] D. Thain, T. Tannenbaum, and M. Livny, Distributed computing in practice: The Condor experience, Concurrency Comput. Pract. Exper. 17 (2005), nos. 2–4, 323–356.
  • [49] S. Türkelli, Connected components of Hurwitz schemes and Malle’s conjecture, J. Number Theory 155 (2015), 163–201.
  • [50] A. Venkatesh and J. S. Ellenberg, “Statistics of number fields and function fields” in Proceedings of the International Congress of Mathematicians, Volume II, Hindustan Book Agency, New Delhi, 2010, 383–402.
  • [51] M. M. Wood, On the probabilities of local behaviors in abelian field extensions, Compos. Math. 146 (2010), no. 1, 102–128.
  • [52] M. M. Wood, “Asymptotics for number fields and class groups” in Directions in Number Theory, Assoc. Women Math. Ser. 3, Springer, New York, 2016, 291–339.
  • [53] M. M. Wood, The distribution of sandpile groups of random graphs, J. Amer. Math. Soc. 30 (2017), no. 4, 915–958.
  • [54] M. M. Wood, Cohen-Lenstra heuristics and local conditions, Res. Number Theory 4 (2018), no. 41.
  • [55] D. J. Wright, Distribution of discriminants of abelian extensions, Proc. Lond. Math. Soc. (3) 58 (1989), no. 1, 17–50.