Duke Mathematical Journal

The class of Eisenbud–Khimshiashvili–Levine is the local A1-Brouwer degree

Jesse Leo Kass and Kirsten Wickelgren

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Given a polynomial function with an isolated zero at the origin, we prove that the local A1-Brouwer degree equals the Eisenbud–Khimshiashvili–Levine class. This answers a question posed by David Eisenbud in 1978. We give an application to counting nodes, together with associated arithmetic information, by enriching Milnor’s equality between the local degree of the gradient and the number of nodes into which a hypersurface singularity bifurcates to an equality in the Grothendieck–Witt group.

Article information

Source
Duke Math. J., Volume 168, Number 3 (2019), 429-469.

Dates
Received: 9 October 2017
Revised: 17 October 2018
First available in Project Euclid: 16 January 2019

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1547607998

Digital Object Identifier
doi:10.1215/00127094-2018-0046

Mathematical Reviews number (MathSciNet)
MR3909901

Zentralblatt MATH identifier
07040614

Subjects
Primary: 14F42: Motivic cohomology; motivic homotopy theory [See also 19E15]
Secondary: 14B05: Singularities [See also 14E15, 14H20, 14J17, 32Sxx, 58Kxx] 55M25: Degree, winding number

Keywords
A1 degree A1 enumerative geometry Eisenbud–Levine/Khimshiashvili signature formula Milnor number

Citation

Kass, Jesse Leo; Wickelgren, Kirsten. The class of Eisenbud–Khimshiashvili–Levine is the local $\mathbf{A}^{1}$ -Brouwer degree. Duke Math. J. 168 (2019), no. 3, 429--469. doi:10.1215/00127094-2018-0046. https://projecteuclid.org/euclid.dmj/1547607998


Export citation

References

  • [1] V. I. Arnold, S. M. Gusein-Zade, and A. N. Varchenko, Singularities of Differentiable Maps, Volume 1, reprint of the 1985 edition, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2012.
  • [2] J. Ayoub, Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique, I, Astérisque 314, Soc. Math. France, Paris, 2007.
  • [3] E. Becker, J. P. Cardinal, M.-F. Roy, and Z. Szafraniec, “Multivariate Bezoutians, Kronecker symbol and Eisenbud-Levine formula” in Algorithms in Algebraic Geometry and Applications (Santander, 1994), Progr. Math. 143, Birkhäuser, Basel, 1996, 79–104.
  • [4] S. Böttger and U. Storch, On Euler’s proof of the fundamental theorem of algebra, J. Indian Inst. Sci. 91 (2011), no. 1, 75–101.
  • [5] C. Cazanave, Classes d’homotopie de fractions rationnelles, C. R. Math. Acad. Sci. Paris 346 (2008), nos. 3–4, 129–133.
  • [6] C. Cazanave, Algebraic homotopy classes of rational functions, Ann. Sci. Éc. Norm. Supér. (4) 45 (2012/2013), no. 4, 511–534.
  • [7] D.-C. Cisinski and F. Déglise, Triangulated categories of mixed motives, preprint, arXiv:0912.2110v3 [math.AG].
  • [8] D. A. Cox, J. Little, and D. O’Shea, Using Algebraic Geometry, 2nd ed., Grad. Texts in Math. 185, Springer, New York, 2005.
  • [9] P. Deligne and N. Katz, Groupes de monodromie en géométrie algébrique, Lecture Notes in Math. 340, Springer, Berlin, 1973.
  • [10] D. Eisenbud, An algebraic approach to the topological degree of a smooth map, Bull. Amer. Math. Soc. 84 (1978), no. 5, 751–764.
  • [11] D. Eisenbud and H. I. Levine, An algebraic formula for the degree of a $C^{\infty}$ map germ, with an appendix by B. Teissier, Ann. of Math. (2) 106 (1977), no. 1, 19–44.
  • [12] D. J. Grigor’ev and N. V. Ivanov, On the Eisenbud-Levine formula over a perfect field, Dokl. Akad. Nauk SSSR 252 (1980), no. 1, 24–27.
  • [13] A. Grothendieck, Éléments de géométrie algébrique, III: Étude cohomologique des faisceaux cohérents, I, Inst. Hautes Études Sci. Publ. Math. 11 (1961).
  • [14] A. Grothendieck, Éléments de géométrie algébrique, IV: Étude locale des schémas et des morphismes de schémas, II, Inst. Hautes Études Sci. Publ. Math. 24 (1965).
  • [15] A. Grothendieck, Éléments de géométrie algébrique, IV: Étude locale des schémas et des morphismes de schémas, IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967).
  • [16] M. Hoyois, A quadratic refinement of the Grothendieck-Lefschetz-Verdier trace formula, Algebr. Geom. Topol. 14 (2014), no. 6, 3603–3658.
  • [17] G. N. Khimshiashvili, The local degree of a smooth mapping, Sakharth. SSR Mecn. Akad. Moambe 85 (1977), no. 2, 309–312.
  • [18] G. N. Khimshiashvili, Signature formulae for topological invariants, Proc. A. Razmadze Math. Inst. 125 (2001), 1–121.
  • [19] J. L. Kass and K. Wickelgren, “$\mathbb{A}^{1}$-Milnor number” in Topologie, Oberwolfach Rep. 13, Eur. Math. Soc., Zürich, 2016, no. 3, 2047–2053.
  • [20] J. L. Kass and K. Wickelgren, A classical proof that the algebraic homotopy class of a rational function is the residue pairing, preprint, arXiv:1602.08129v2 [math.AG].
  • [21] J. L. Kass and K. Wickelgren, An arithmetic count of the lines on a smooth cubic surface, preprint, arXiv:1708.01175v1 [math.AG].
  • [22] T. Y. Lam, Introduction to Quadratic Forms over Fields, Grad. Stud. in Math. 67, Amer. Math. Soc., Providence, 2005.
  • [23] T. Y. Lam, Serre’s Problem on Projective Modules, Springer, Berlin, 2006.
  • [24] M. Levine, Toward an enumerative geometry with quadratic forms, preprint, arXiv:1703.03049v3 [math.AG].
  • [25] H. Matsumura, Commutative Ring Theory, 2nd ed., Cambridge Stud. Adv. Math. 8, Cambridge Univ. Press, Cambridge, 1989.
  • [26] J. Milnor, Singular Points of Complex Hypersurfaces, Ann. of Math. Stud. 61, Princeton Univ. Press, Princeton, 1968.
  • [27] F. Morel, “On the motivic $\pi_{0}$ of the sphere spectrum” in Axiomatic, Enriched and Motivic Homotopy Theory, NATO Sci. Ser. II Math. Phys. Chem. 131, Kluwer Acad. Publ., Dordrecht, 2004, 219–260.
  • [28] F. Morel, “$\mathbb{A}^{1}$-algebraic topology” in International Congress of Mathematicians, Vol. II, Eur. Math. Soc., Zürich, 2006, 1035–1059.
  • [29] F. Morel and V. Voevodsky, ${\mathbb{A}}^{1}$-homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (2001), 45–143.
  • [30] V. P. Palamodov, The multiplicity of a holomorphic transformation, Funkcional. Anal. i Priložen 1 (1967), no. 3, 54–65.
  • [31] G. Scheja and U. Storch, Über Spurfunktionen bei vollständigen Durchschnitten, J. Reine Angew. Math. 278/279 (1975), 174–190.
  • [32] V. Voevodsky, Motivic cohomology with $\textbf{Z}/2$-coefficients, Publ. Math. Inst. Hautes Études Sci. 98 (2003), 59–104.
  • [33] C. T. C. Wall, Topological invariance of the Milnor number mod $2$, Topology 22 (1983), no. 3, 345–350.
  • [34] J.-Y. Welschinger, “Invariants entiers en géométrie énumérative réelle” in Proceedings of the International Congress of Mathematicians, Volume II, Hindustan Book Agency, New Delhi, 2010, 652–678.