Duke Mathematical Journal

Counting points of schemes over finite rings and counting representations of arithmetic lattices

Avraham Aizenbud and Nir Avni

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We relate the singularities of a scheme X to the asymptotics of the number of points of X over finite rings. This gives a partial answer to a question of Mustata. We use this result to count representations of arithmetic lattices. More precisely, if Γ is an arithmetic lattice whose Q-rank is greater than 1, then let rn(Γ) be the number of irreducible n-dimensional representations of Γ up to isomorphism. We prove that there is a constant C (in fact, any C>40 suffices) such that rn(Γ)=O(nC) for every such Γ. This answers a question of Larsen and Lubotzky.

Article information

Source
Duke Math. J., Volume 167, Number 14 (2018), 2721-2743.

Dates
Received: 5 May 2016
Revised: 13 February 2018
First available in Project Euclid: 28 September 2018

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1538121919

Digital Object Identifier
doi:10.1215/00127094-2018-0021

Mathematical Reviews number (MathSciNet)
MR3859363

Zentralblatt MATH identifier
06982205

Subjects
Primary: 14G05: Rational points
Secondary: 14B05: Singularities [See also 14E15, 14H20, 14J17, 32Sxx, 58Kxx] 20F69: Asymptotic properties of groups 14G10: Zeta-functions and related questions [See also 11G40] (Birch- Swinnerton-Dyer conjecture) 20G05: Representation theory 20G30: Linear algebraic groups over global fields and their integers

Keywords
representation growth Igusa zeta function

Citation

Aizenbud, Avraham; Avni, Nir. Counting points of schemes over finite rings and counting representations of arithmetic lattices. Duke Math. J. 167 (2018), no. 14, 2721--2743. doi:10.1215/00127094-2018-0021. https://projecteuclid.org/euclid.dmj/1538121919


Export citation

References

  • [1] A. Aizenbud and N. Avni, Representation growth and rational singularities of the moduli space of local systems, Invent. Math. 204 (2016), 245–316.
  • [2] N. Avni, Arithmetic groups have rational representation growth, Ann. of Math. (2) 174 (2011), 1009–1056.
  • [3] N. Avni, B. Klopsch, U. Onn, and C. Voll, Representation zeta functions of compact $p$-adic analytic groups and arithmetic groups, Duke Math. J. 162 (2013), 111–197.
  • [4] N. Avni, B. Klopsch, U. Onn, and C. Voll, Arithmetic groups, base change, and representation growth, Geom. Funct. Anal. 26 (2016), 67–135.
  • [5] A. I. Borevich and I. R. Shafarevich, Number Theory, Pure Appl. Math. 20, Academic Press, New York, 1966.
  • [6] R. Cluckers and F. Loeser, Constructible exponential functions, motivic Fourier transform and transfer principle, Ann. of Math. (2) 171 (2010), 1011–1065.
  • [7] A. J. de Jong, Smoothness, semi-stability and alterations, Inst. Hautes Études Sci. Publ. Math. 83 (1996), 51–93.
  • [8] J. Denef, On the degree of Igusa’s local zeta function, Amer. J. Math. 109 (1987), 991–1008.
  • [9] J. Denef, Report on Igusa’s local zeta function, Astérisque 201–203 (1992), 359–386, Séminaire Bourbaki 1990/1991, no. 741.
  • [10] M. P. F. Du Sautoy and F. Grunewald, Analytic properties of zeta functions and subgroup growth, Ann. of Math. (2) 152 (2000), 793–833.
  • [11] R. Elkik, Rationalite des singularites canoniques, Invent. Math. 64 (1981), 1–6.
  • [12] H. Flenner, Rationale quasihomogene Singularitäten, Arch. Math. (Basel) 36 (1981), 35–44.
  • [13] A. Grothendieck, Éléments de géométrie algébrique, IV: Étude locale des schémas et des morphismes de schémas, III, Inst. Hautes Études Sci. Publ. Math. 28 (1966).
  • [14] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1977.
  • [15] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, I, Ann. of Math. (2) 79 (1964), 109–203; II, 205–326.
  • [16] A. Jaikin-Zapirain, Zeta function of representations of compact $p$-adic analytic groups, J. Amer. Math. Soc. 19 (2006), 91–118.
  • [17] G. Kempf, F. F. Knudsen, D. Mumford, and B. Saint-Donat, Toroidal Embeddings, I, Lecture Notes in Math. 339, Springer, Berlin, 1973.
  • [18] S. Lang and A. Weil, Number of points of varieties in finite fields, Amer. J. Math. 76 (1954), 819–827.
  • [19] M. Larsen and A. Lubotzky, Representation growth of linear groups, J. Eur. Math. Soc. (JEMS) 10 (2008), 351–390.
  • [20] M. W. Liebeck and A. Shalev, Character degrees and random walks in finite groups of Lie type, Proc. London Math. Soc. (3) 90 (2005), 61–86.
  • [21] M. W. Liebeck and A. Shalev, Fuchsian groups, finite simple groups and representation varieties, Invent. Math. 159 (2005), 317–367.
  • [22] A. Lubotzky and B. Martin, Polynomial representation growth and the congruence subgroup problem, Israel J. Math. 144 (2004), 293–316.
  • [23] M. Mustaţă, Jet schemes of locally complete intersection canonical singularities, Invent. Math. 145 (2001), 397–424.
  • [24] M. Mustaţă, Zeta functions in algebraic geometry, lecture notes, 2011, http://www.math.lsa.umich.edu/~mmustata/zeta_book.pdf.
  • [25] V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, Pure Appl. Math. 139, Academic Press, Boston, 1994.
  • [26] M. S. Raghunathan, The congruence subgroup problem, Proc. Indian Acad. Sci. Math. Sci. 114 (2004), 299–308.