Duke Mathematical Journal

A geometric characterization of toric varieties

Morgan V. Brown, James McKernan, Roberto Svaldi, and Hong R. Zong

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We prove a conjecture of Shokurov which characterizes toric varieties using log pairs.

Article information

Source
Duke Math. J., Volume 167, Number 5 (2018), 923-968.

Dates
Received: 27 May 2016
Revised: 30 August 2017
First available in Project Euclid: 3 March 2018

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1520046166

Digital Object Identifier
doi:10.1215/00127094-2017-0047

Mathematical Reviews number (MathSciNet)
MR3782064

Zentralblatt MATH identifier
06870397

Subjects
Primary: 14E30: Minimal model program (Mori theory, extremal rays)
Secondary: 14M25: Toric varieties, Newton polyhedra [See also 52B20]

Keywords
toric variety Mori theory Cox ring Mori dream space

Citation

Brown, Morgan V.; McKernan, James; Svaldi, Roberto; Zong, Hong R. A geometric characterization of toric varieties. Duke Math. J. 167 (2018), no. 5, 923--968. doi:10.1215/00127094-2017-0047. https://projecteuclid.org/euclid.dmj/1520046166


Export citation

References

  • [1] V. Alexeev, Limits of stable pairs, Pure Appl. Math. Q. 4 (2008), 767–783.
  • [2] V. Alexeev and C. D. Hacon, Non-rational centers of log canonical singularities, J. Algebra 369 (2012), 1–15.
  • [3] C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), 405–468.
  • [4] M. Brown, Singularities of Cox rings of Fano varieties, J. Math. Pures Appl. (9) 99 (2013), 655–667.
  • [5] J. Fine, On varieties isomorphic in codimension one to torus embeddings, Duke Math. J. 58 (1989), 79–88.
  • [6] O. Fujino, Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci. 47 (2011), 727–789.
  • [7] W. Fulton, Intersection Theory, Ergeb. Math. Grenzgeb. (3) 2, Springer, Berlin, 1984.
  • [8] W. Fulton, Introduction to Toric Varieties, Ann. of Math. Stud. 131, Princeton Univ. Press, Princeton, 1993.
  • [9] Y. Gongyo, S. Okawa, A. Sannai, and S. Takagi, Characterization of varieties of Fano type via singularities of Cox rings, J. Algebraic Geom. 24 (2015), 159–182.
  • [10] M. Gross, P. Hacking, S. Keel, and B. Siebert, Theta functions on varieties with effective anti-canonical class, preprint, arXiv:1601.07081v1 [math.AG].
  • [11] C. Hacon and J. McKernan, On Shokurov’s rational connectedness conjecture, Duke Math. J. 138 (2007), 119–136.
  • [12] C. Hacon and J. McKernan, The Sarkisov program, J. Algebraic Geom. 22 (2013), 389–405.
  • [13] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1977.
  • [14] J. Hausen, Cox rings and combinatorics, II, Mosc. Math. J. 8 (2008), 711–757, 847.
  • [15] Y. Hu and S. Keel, Mori dream spaces and GIT, Michigan Math. J. 48 (2000), 331–348.
  • [16] I. Karzhemanov, On characterization of toric varieties, preprint, arXiv:1306.4131v9 [math.AG].
  • [17] Y. Kawamata, On the length of an extremal rational curve, Invent. Math. 105 (1991), 609–611.
  • [18] Y. Kawamata and S. Okawa, Mori dream spaces of Calabi-Yau type and log canonicity of Cox rings, J. Reine Angew. Math. 701 (2015), 195–203.
  • [19] S. Keel and J. McKernan, Rational curves on quasi-projective surfaces, Mem. Amer. Math. Soc. 140 (1999), no. 669.
  • [20] J. Kollár, Flips and Abundance for Algebraic Threefolds, Astérisque 211, Soc. Math. France, Paris, 1992.
  • [21] J. Kollár and S. Kovács, Log canonical singularities are Du Bois, J. Amer. Math. Soc. 23 (2010), 791–813.
  • [22] J. Kollár and S. Mori, Birational Geometry of Algebraic Varieties, Cambridge Tracts in Math. 134, Cambridge Univ. Press, Cambridge, 1998.
  • [23] G. Martens, The gonality of curves on a Hirzebruch surface, Arch. Math. (Basel) 67 (1996), 349–352.
  • [24] N. Nakayama, Zariski-decomposition and abundance, MSJ Mem. 14, Math. Soc. Japan, Tokyo, 2004.
  • [25] S. Okawa, On images of Mori dream spaces, Math. Ann. 364 (2016), 1315–1342.
  • [26] Y. G. Prokhorov, On a conjecture of Shokurov: Characterization of toric varieties, Tohoku Math. J. (2) 53 (2001), 581–592.
  • [27] V. V. Shokurov, Prym varieties: Theory and applications (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), no. 4, 785–855; English translation in Math. USSR-Izv. 23 (1984), no. 1, 83–147.
  • [28] V. V. Shokurov, Complements on surfaces, J. Math. Sci. (New York) 102 (2000), 3876–3932.
  • [29] V. V. Shokurov, Letters of a bi-rationalist, VII: Ordered termination (in Russian), Tr. Mat. Inst. Steklova 264 (2009), no. 1, 184–208; English translation in Proc. Steklov Inst. Math. 264 (2009), no. 1, 178–200.
  • [30] J. Tevelev, Compactifications of subvarieties of tori, Amer. J. Math. 129 (2007), 1087–1104.
  • [31] Y. Yao, A criterion for toric varieties, Ph.D. dissertation, University of Texas, Austin, Austin, Texas, 2013.