Duke Mathematical Journal

The Abelianization of the real Cremona group

Susanna Zimmermann

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We present the Abelianization of the group of birational transformations of PR2.

Article information

Source
Duke Math. J., Volume 167, Number 2 (2018), 211-267.

Dates
Received: 4 December 2015
Revised: 22 June 2017
First available in Project Euclid: 23 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1513998141

Digital Object Identifier
doi:10.1215/00127094-2017-0028

Mathematical Reviews number (MathSciNet)
MR3754629

Zentralblatt MATH identifier
06847245

Subjects
Primary: 14E07: Birational automorphisms, Cremona group and generalizations
Secondary: 14P99: None of the above, but in this section

Keywords
Cremona group real algebraic geometry birational geometry

Citation

Zimmermann, Susanna. The Abelianization of the real Cremona group. Duke Math. J. 167 (2018), no. 2, 211--267. doi:10.1215/00127094-2017-0028. https://projecteuclid.org/euclid.dmj/1513998141


Export citation

References

  • [1] M. Alberich-Carramiñana,Geometry of the Plane Cremona Maps, Lecture Notes in Math.1769, Springer, Berlin, 2002.
  • [2] A. Beauville,p-elementary subgroups of the Cremona group, J. Algebra314(2007), 553–564.
  • [3] J. Blanc,Simple relations in the Cremona group, Proc. Amer. Math. Soc.140(2012), 1495–1500.
  • [4] J. Blanc and J.-P. Furter,Topologies and structures of the Cremona groups, Ann. of Math. (2)178(2013), 1173–1198.
  • [5] J. Blanc and F. Mangolte, “Cremona groups of real surfaces” inAutomorphisms in Birational and Affine Geometry, Springer Proc. Math. Stat.79, Springer, Cham, 2014, 35–58.
  • [6] J. Blanc and S. Zimmermann,Topological simplicity of the Cremona groups, to appear in Amer. J. Math., preprint,arXiv1511.08907v1[math.AG].
  • [7] S. Cantat and S. Lamy,Normal subgroups in the Cremona group, Acta Math.210(2013), 31–94.
  • [8] G. Castelnuovo,Le trasformazioni generatrici del gruppo cremoniano nel piano, Atti Accad. Sci. Torino36(1901), 861–874.
  • [9] I. Cheltsov and C. Shramov,Cremona Groups and the Icosahedron, CRC Res. Notes Math., CRC, Boca Raton, Fla., 2016.
  • [10] F. Dahmani, V. Guirardel, and D. Osin,Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces, Mem. Amer. Math. Soc.245(2017), no. 1156.
  • [11] I. V. Dolgachev,Classical Algebraic Geometry: A Modern View, Cambridge Univ. Press, Cambridge, 2012.
  • [12] M. H. Gizatullin, “The decomposition, inertia and ramification groups in birational geometry” inAlgebraic Geometry and Its Applications (Yaroslavl’, 1992), Aspects Math.E25, Vieweg, Braunschweig, 1994, 39–45.
  • [13] H. P. Hudson,Cremona Transformations in Plane and Space, Cambridge Univ. Press, London, 1927.
  • [14] V. A. Iskovskikh,Proof of a theorem on relations in a two-dimensional Cremona group(in Russian), Uspekhi Mat. Nauk40, no. 5 (1985), (245), 255–256; English translation in Russian Math. Surveys40(1985), 231–232.
  • [15] J. Kollár and F. Mangolte,Cremona transformations and diffeomorphisms of surfaces, Adv. Math.222(2009), 44–61.
  • [16] A. Lonjou,Non simplicité du groupe de Cremona sur tout corps, Ann. Inst. Fourier (Grenoble)66(2016), 2021–2046.
  • [17] O. T. O’Meara,Introduction to Quadratic Forms, reprint of the 1973 edition, Classics Math., Springer, Berlin, 2000.
  • [18] I. Pan,Une remarque sur la génération du groupe de Cremona, Bol. Soc. Brasil. Mat. (N.S.)30(1999), 95–98.
  • [19] Yu. M. Polyakova,Factorization of birational mappings of rational surfaces over the field of real numbers, Fundam. Prikl. Mat.3, no. 2 (1997), 519–547.
  • [20] F. Ronga and T. Vust,Diffeomorfismi birazionali del piano proiettivo reale.Comment. Math. Helv.80(2005), 517–540.
  • [21] S. Zimmermann,The Cremona group of the plane is compactly presented, J. Lond. Math. Soc. (2)93(2016), 25–46.