Duke Mathematical Journal

The colored HOMFLYPT function is q-holonomic

Stavros Garoufalidis, Aaron D. Lauda, and Thang T. Q. Lê

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We prove that the HOMFLYPT polynomial of a link colored by partitions with a fixed number of rows is a q-holonomic function. By specializing to the case of knots colored by a partition with a single row, it proves the existence of an (a,q) superpolynomial of knots in 3-space, as was conjectured by string theorists. Our proof uses skew-Howe duality that reduces the evaluation of web diagrams and their ladders to a Poincaré–Birkhoff–Witt computation of an auxiliary quantum group of rank the number of strings of the ladder diagram. The result is a concrete and algorithmic web evaluation algorithm that is manifestly q-holonomic.

Article information

Source
Duke Math. J., Volume 167, Number 3 (2018), 397-447.

Dates
Received: 28 April 2016
Revised: 18 April 2017
First available in Project Euclid: 10 November 2017

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1510304421

Digital Object Identifier
doi:10.1215/00127094-2017-0030

Mathematical Reviews number (MathSciNet)
MR3761103

Zentralblatt MATH identifier
06848176

Subjects
Primary: 57N10: Topology of general 3-manifolds [See also 57Mxx]
Secondary: 57M25: Knots and links in $S^3$ {For higher dimensions, see 57Q45}

Keywords
knots HOMFLYPT polynomial colored HOMFLYPT polynomial MOY graphs webs ladders skew-Howe duality quantum groups q-holonomic superpolynomial Chern–Simons theory

Citation

Garoufalidis, Stavros; Lauda, Aaron D.; Lê, Thang T. Q. The colored HOMFLYPT function is $q$ -holonomic. Duke Math. J. 167 (2018), no. 3, 397--447. doi:10.1215/00127094-2017-0030. https://projecteuclid.org/euclid.dmj/1510304421


Export citation

References

  • [1] M. Aganagic, T. Ekholm, L. Ng, and C. Vafa, Topological strings, D-model, and knot contact homology, Adv. Theor. Math. Phys. 18 (2014), 827–956.
  • [2] M. Aganagic and C. Vafa, Large $N$ duality, mirror symmetry, and a Q-deformed A-polynomial for knots, preprint, arXiv:1204.4709v4 [hep-th].
  • [3] A. K. Aiston and H. R. Morton, Idempotents of Hecke algebras of type $A$, J. Knot Theory Ramifications 7 (1998), 463–487.
  • [4] A. Beliakova, Q. Chen, and T. T. Q. Lê, On the integrality of the Witten-Reshetikhin-Turaev 3-manifold invariants, Quantum Topol. 5 (2014), 99–141.
  • [5] S. Cautis, J. Kamnitzer, and S. Morrison, Webs and quantum skew Howe duality, Math. Ann. 360 (2014), 351–390.
  • [6] V. Chari and A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge, 1994.
  • [7] I. Cherednik, DAHA-Jones polynomials of torus knots, Selecta Math. (N.S.) 22 (2016), 1013–1053.
  • [8] J. Chuang and R. Rouquier, Derived equivalences for symmetric groups and $\mathfrak{sl}_{2}$-categorification, Ann. of Math. (2) 167 (2008), 245–298.
  • [9] T. Dimofte and S. Gukov, Refined, motivic, and quantum, Lett. Math. Phys. 91 (2010), 1–27.
  • [10] N. M. Dunfield, S. Gukov, and J. Rasmussen, The superpolynomial for knot homologies, Experiment. Math. 15 (2006), 129–159.
  • [11] P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik, Tensor Categories, Math. Surveys Monogr. 205, Amer. Math. Soc., Providence, 2015.
  • [12] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, and A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. (N.S.) 12 (1985), 239–246.
  • [13] H. Fuji, S. Gukov, and P. Sułkowski, Super-$A$-polynomial for knots and BPS states, Nuclear Phys. B 867 (2013), 506–546.
  • [14] H. Fuji, S. Gukov, P. Sułkowski, and H. Awata, Volume conjecture: Refined and categorified, Adv. Theor. Math. Phys. 16 (2012), 1669–1777.
  • [15] W. Fulton and J. Harris, Representation Theory, Grad. Texts in Math. 129, Springer, New York, 1991.
  • [16] S. Garoufalidis, “On the characteristic and deformation varieties of a knot” in Proceedings of the Casson Fest, Geom. Topol. Monogr. 7, Geom. Topol. Publ., Coventry, R.I., 2004, 291–309.
  • [17] S. Garoufalidis, Quantum knot invariants, preprint, arXiv:1201.3314v3 [math.GT].
  • [18] S. Garoufalidis, The colored HOMFLY polynomial is $q$-holonomic, preprint, arXiv:1211.6388v1 [math.GT].
  • [19] S. Garoufalidis and T. T. Q. Lê, The colored Jones function is $q$-holonomic, Geom. Topol. 9 (2005), 1253–1293.
  • [20] S. Garoufalidis and T. T. Q. Lê, A survey of $q$-holonomic functions, Enseign. Math. 62 (2016), 501–525.
  • [21] S. Garoufalidis and R. van der Veen, A generating series for Murakami-Ohtsuki-Yamada graph evaluations, Acta Math. Vietnam. 39 (2014), 529–539.
  • [22] S. Garoufalidis and D. Zagier, Quantum modularity of the Kashaev invariant, preprint, 2013.
  • [23] S. Gukov and I. Saberi, “Lectures on knot homology and quantum curves” in Topology and Field Theories, Contemp. Math. 613, Amer. Math. Soc., Providence, 2014, 41–78.
  • [24] S. Gukov, A. Schwarz, and C. Vafa, Khovanov-Rozansky homology and topological strings, Lett. Math. Phys. 74 (2005), 53–74.
  • [25] S. Gukov and M. Stošić, “Homological algebra of knots and BPS states” in Proceedings of the Freedman Fest, Geom. Topol. Monogr. 18, Geom. Topol. Publ., Coventry, R.I., 2012, 309–367.
  • [26] H. Itoyama, A. Mironov, A. Morozov, and A. Morozov, Character expansion for HOMFLY polynomials, III: All 3-strand braids in the first symmetric representation, Internat. J. Modern Phys. A 27 (2012), no. 1250099.
  • [27] H. Itoyama, A. Mironov, A. Morozov, and A. Morozov, HOMFLY and superpolynomials for figure eight knot in all symmetric and antisymmetric representations, J. High Energy Phys. 2012, no. 131.
  • [28] J. C. Jantzen, Lectures on Quantum Groups, Grad. Stud. in Math. 6, Amer. Math. Soc., Providence, 1996.
  • [29] V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), 335–388.
  • [30] V. F. R. Jones, Planar algebras, I, preprint, arXiv:math/9909027v1 [math.QA].
  • [31] C. Kassel, M. Rosso, and V. Turaev, Quantum Groups and Knot Invariants, Panor. Synthèses 5, Soc. Math. France, Paris, 1997.
  • [32] K. Kawagoe, On the formulae for the colored HOMFLY polynomials, J. Geom. Phys. 106 (2016), 143–154.
  • [33] G. Kuperberg, Spiders for rank $2$ Lie algebras, Comm. Math. Phys. 180 (1996), 109–151.
  • [34] J. Labastida, M. Mariño, and C. Vafa, Knots, links and branes at large $N$, J. High Energy Phys. 2000, no. 7.
  • [35] T. T. Q. Lê, Integrality and symmetry of quantum link invariants, Duke Math. J. 102 (2000), 273–306.
  • [36] T. T. Q. Lê, The colored Jones polynomial and the $A$-polynomial of knots, Adv. Math. 207 (2006), 782–804.
  • [37] S. G. Lukac, Homfly skeins and the Hopf link, Ph.D. dissertation, University of Liverpool, Liverpool, UK, 2001.
  • [38] G. Lusztig, Introduction to Quantum Groups, reprint of the 1994 edition, Mod. Birkhäuser Class., Birkhäuser/Springer, New York, 2010.
  • [39] I. G. Macdonald, Symmetric functions and Hall polynomials, with contributions by A. Zelevinsky, 2nd ed., Oxford Math. Monogr., Oxford Univ. Press, New York, 1995.
  • [40] G. Masbaum and H. Wenzl, Integral modular categories and integrality of quantum invariants at roots of unity of prime order, J. Reine Angew. Math. 505 (1998), 209–235.
  • [41] H. R. Morton and S. G. Lukac, The Homfly polynomial of the decorated Hopf link, J. Knot Theory Ramifications 12 (2003), 395–416.
  • [42] H. R. Morton and P. Manchón, Geometrical relations and plethysms in the Homfly skein of the annulus, J. Lond. Math. Soc. (2) 78 (2008), 305–328.
  • [43] H. Murakami, T. Ohtsuki, and S. Yamada, Homfly polynomial via an invariant of colored plane graphs, Enseign. Math. (2) 44 (1998), 325–360.
  • [44] S. Nawata, P. Ramadevi, Zodinmawia, and X. Sun, Super-A-polynomials for twist knots, J. High Energy Phys. 2012, no. 157.
  • [45] L. Ng, Framed knot contact homology, Duke Math. J. 141 (2008), 365–406.
  • [46] T. Ohtsuki, Quantum Invariants, Ser. Knots Everything 29, World Sci., River Edge, N.J., 2002.
  • [47] M. Petkovšek, H. S. Wilf, and D. Zeilberger, $A=B$, A K Peters, Wellesley, Mass., 1996.
  • [48] J. H. Przytycki and P. Traczyk, Conway algebras and skein equivalence of links, Proc. Amer. Math. Soc. 100 (1987), 744–748.
  • [49] H. Queffelec and A. Sartori, HOMFLY-PT and Alexander polynomials from a doubled Schur algebra, to appear in Quantum Topol., preprint, arXiv:1412.3824v1 [math.QA].
  • [50] H. Queffelec and A. Sartori, Mixed quantum skew Howe duality and link invariants of type A, preprint, arXiv:1504.01225v2 [math.RT].
  • [51] N. Y. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), 1–26.
  • [52] C. Sabbah, “Systèmes holonomes d’équations aux $q$-différences” in $D$-Modules and Microlocal Geometry (Lisbon, 1990), de Gruyter, Berlin, 1993, 125–147.
  • [53] V. G. Turaev, The Yang-Baxter equation and invariants of links, Invent. Math. 92 (1988), 527–553.
  • [54] V. G. Turaev, Quantum Invariants of Knots and 3-Manifolds, de Gruyter Stud. Math. 18, de Gruyter, Berlin, 1994.
  • [55] P. Wedrich, $q$-holonomic formulas for colored HOMFLY polynomials of 2-bridge links, preprint, arXiv:1410.3769v1 [math.GT].
  • [56] H. Wenzl, Representations of braid groups and the quantum Yang-Baxter equation, Pacific J. Math. 145 (1990), 153–180.
  • [57] H. S. Wilf and D. Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and “$q$”) multisum/integral identities, Invent. Math. 108 (1992), 575–633.
  • [58] D. Zeilberger, A holonomic systems approach to special functions identities, J. Comput. Appl. Math. 32 (1990), 321–368.