Duke Mathematical Journal

Representation stability and finite linear groups

Andrew Putman and Steven V Sam

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We study analogues of FI-modules where the role of the symmetric group is played by the general linear groups and the symplectic groups over finite rings, and we prove basic structural properties such as local Noetherianity. Applications include a proof of the Lannes–Schwartz Artinian conjecture in the generic representation theory of finite fields, very general homological stability theorems with twisted coefficients for the general linear and symplectic groups over finite rings, and representation-theoretic versions of homological stability for congruence subgroups of the general linear group, the automorphism group of a free group, the symplectic group, and the mapping class group.

Article information

Source
Duke Math. J., Volume 166, Number 13 (2017), 2521-2598.

Dates
Received: 20 December 2015
Revised: 13 January 2017
First available in Project Euclid: 20 June 2017

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1497924228

Digital Object Identifier
doi:10.1215/00127094-2017-0008

Mathematical Reviews number (MathSciNet)
MR3703435

Zentralblatt MATH identifier
06797413

Subjects
Primary: 18A25: Functor categories, comma categories
Secondary: 11F75: Cohomology of arithmetic groups 20C33: Representations of finite groups of Lie type

Keywords
representation stability FI-modules Artinian conjecture congruence subgroups mapping class group automorphism group of free group

Citation

Putman, Andrew; Sam, Steven V. Representation stability and finite linear groups. Duke Math. J. 166 (2017), no. 13, 2521--2598. doi:10.1215/00127094-2017-0008. https://projecteuclid.org/euclid.dmj/1497924228


Export citation

References

  • [1] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, Mass., 1969.
  • [2] S. Betley, Twisted homology of symmetric groups, Proc. Amer. Math. Soc. 130 (2002), 3439–3445.
  • [3] A. Borel, Stable real cohomology of arithmetic groups, Ann. Sci. Éc. Norm. Supér. (4) 7 (1974), 235–272.
  • [4] A. Borel and J.-P. Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973), 436–491.
  • [5] K. S. Brown, Cohomology of Groups, Grad. Texts in Math. 87, Springer, New York, 1994.
  • [6] R. M. Charney, Homology stability for $\mathrm{GL}_{n}$ of a Dedekind domain, Invent. Math. 56 (1980), 1–17.
  • [7] R. M. Charney, On the problem of homology stability for congruence subgroups, Comm. Algebra 12 (1984), 2081–2123.
  • [8] R. M. Charney, A generalization of a theorem of Vogtmann, J. Pure Appl. Algebra 44 (1987), 107–125.
  • [9] T. Church, Homological stability for configuration spaces of manifolds, Invent. Math. 188 (2012), 465–504.
  • [10] T. Church, personal communication, September 2014.
  • [11] T. Church, J. S. Ellenberg, and B. Farb, FI-modules and stability for representations of symmetric groups, Duke Math. J. 164 (2015), 1833–1910.
  • [12] T. Church, J. S. Ellenberg, B. Farb, and R. Nagpal, FI-modules over Noetherian rings, Geom. Topol. 18 (2014), 2951–2984.
  • [13] T. Church and B. Farb, Representation theory and homological stability, Adv. Math. 245 (2013), 250–314.
  • [14] T. Church and A. Putman, Generating the Johnson filtration, Geom. Topol. 19 (2015), 2217–2255.
  • [15] M. Culler and K. Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986), 91–119.
  • [16] M. Day and A. Putman, On the second homology group of the Torelli subgroup of $\operatorname{Aut}(F_{n})$, to appear in Geom. Topol., preprint, arXiv:1408.6242v3 [math.GT].
  • [17] A. Djament, Foncteurs en grassmanniennes, filtration de Krull et cohomologie des foncteurs, Mém. Soc. Math. Fr. (N.S.) 111, Soc. Math. France, Paris, 2008.
  • [18] A. Djament, Le foncteur $V\mapsto{\mathbb{F}}_{2}[V]^{\otimes3}$ entre ${\mathbb{F}}_{2}$-espaces vectoriels est noethérien, Ann. Inst. Fourier (Grenoble) 59 (2009), 459–490.
  • [19] A. Djament, Sur l’homologie des groupes unitaires à coefficients polynomiaux, J. K-Theory 10 (2012), 87–139.
  • [20] A. Djament and C. Vespa, Sur l’homologie des groupes orthogonaux et symplectiques à coefficients tordus, Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), 395–459.
  • [21] A. Djament and C. Vespa, Sur l’homologie des groupes d’automorphismes des groupes libres à coefficients polynomiaux, Comment. Math. Helv. 90 (2015), 33–58.
  • [22] J. Draisma and J. Kuttler, Bounded-rank tensors are defined in bounded degree, Duke Math. J. 163 (2014), 35–63.
  • [23] W. G. Dwyer, Twisted homological stability for general linear groups, Ann. of Math. (2) 111 (1980), 239–251.
  • [24] B. Farb, “Representation stability,” in Proceedings of the 2014 International Congress of Mathematicians, Volume II, Kyung Moon Sa, Seoul, 2014, 1173–1196.
  • [25] B. Farb and D. Margalit, A Primer on Mapping Class Groups, Princeton Math. Ser. 49, Princeton Univ. Press, Princeton, 2012.
  • [26] V. Franjou, E. Friedlander, T. Pirashvilli, and L. Schwartz, Rational representations, the Steenrod algebra and functor homology, Panor. Synthèses, 16, Soc. Math. France, Paris, 2003.
  • [27] V. Franjou and A. Touzé, eds., Lectures on Functor Homology, Progr. Math. 311, Birkhäuser/Springer, Cham, 2015.
  • [28] G. Friedman, Survey article: An elementary illustrated introduction to simplicial sets, Rocky Mountain J. Math. 42 (2012), 353–423.
  • [29] S. Galatius, Stable homology of automorphism groups of free groups, Ann. of Math. (2) 173 (2011), 705–768.
  • [30] W. L. Gan and L. Li, Noetherian property of infinite EI categories, New York J. Math. 21 (2015), 369–382.
  • [31] D. Grayson, “Higher algebraic $K$-theory, II (after Daniel Quillen),” in Algebraic $K$-Theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976), Lecture Notes in Math. 551, Springer, Berlin, 1976, 217–240.
  • [32] J. L. Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. (2) 121 (1985), 215–249.
  • [33] A. Hatcher, Homological stability for automorphism groups of free groups, Comment. Math. Helv. 70 (1995), 39–62.
  • [34] A. Hatcher and K. Vogtmann, Cerf theory for graphs, J. London Math. Soc. (2) 58 (1998), 633–655.
  • [35] A. Hatcher and K. Vogtmann, Homology stability for outer automorphism groups of free groups, Algebr. Geom. Topol. 4 (2004), 1253–1272.
  • [36] A. Hatcher and K. Vogtmann, Tethers and homology stability for surfaces, to appear in Algebr. Geom. Topol., preprint, arXiv:1508.04334v3 [math.GT].
  • [37] A. Hatcher and N. Wahl, Stabilization for mapping class groups of 3-manifolds, Duke Math. J. 155 (2010), 205–269.
  • [38] G. Higman, Ordering by divisibility in abstract algebras, Proc. London Math. Soc. (3) 2 (1952), 326–336.
  • [39] N. V. Ivanov, “On the homology stability for Teichmüller modular groups: closed surfaces and twisted coefficients,” in Mapping Class Groups and Moduli Spaces of Riemann Surfaces (Göttingen, 1991/Seattle, Wash., 1991), Contemp. Math. 150, Amer. Math. Soc., Providence, 1993, 149–194.
  • [40] J. B. Kruskal, The theory of well-quasi-ordering: A frequently discovered concept, J. Combinatorial Theory Ser. A 13 (1972), 297–305.
  • [41] N. J. Kuhn, Generic representations of the finite general linear groups and the Steenrod algebra, II, $K$-Theory 8 (1994), 395–428.
  • [42] N. J. Kuhn, Invariant subspaces of the ring of functions on a vector space over a finite field, J. Algebra 191 (1997), 212–227.
  • [43] R. Lee and R. H. Szczarba, On the homology and cohomology of congruence subgroups, Invent. Math. 33 (1976), 15–53.
  • [44] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Ergeb. Math. Grenzgeb. 89, Springer, Berlin, 1977.
  • [45] I. Madsen and M. Weiss, The stable moduli space of Riemann surfaces: Mumford’s conjecture, Ann. of Math. (2) 165 (2007), 843–941.
  • [46] D. McDuff, Configuration spaces of positive and negative particles, Topology 14 (1975), 91–107.
  • [47] E. Y. Miller, The homology of the mapping class group, J. Differential Geom. 24 (1986), 1–14.
  • [48] B. Mirzaii and W. van der Kallen, Homology stability for unitary groups, Doc. Math. 7 (2002), 143–166.
  • [49] M. Nakaoka, Decomposition theorem for homology groups of symmetric groups, Ann. of Math. (2) 71 (1960), 16–42.
  • [50] V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory, Pure Appl. Math. 139, Academic Press, Boston, 1994.
  • [51] G. M. L. Powell, The Artinian conjecture for $I^{\otimes2}$, J. Pure Appl. Algebra 128 (1998), 291–310.
  • [52] G. M. L. Powell, The structure of indecomposable injectives in generic representation theory, Trans. Amer. Math. Soc. 350 (1998), no. 10, 4167–4193.
  • [53] G. M. L. Powell, “On Artinian objects in the category of functors between ${\mathbf{F}}_{2}$-vector spaces,” in Infinite Length Modules (Bielefeld, 1998), Trends Math., Birkhäuser, Basel, 213–228.
  • [54] A. Putman, The Picard group of the moduli space of curves with level structures, Duke Math. J. 161 (2012), 623–674.
  • [55] A. Putman, Stability in the homology of congruence subgroups, Invent. Math. 202 (2015), 987–1027.
  • [56] I. Reiner, Unimodular complements, Amer. Math. Monthly 63 (1956), 246–247.
  • [57] S. V. Sam and A. Snowden, Stability patterns in representation theory, Forum Math. Sigma 3 (2015), no. e11.
  • [58] S. V. Sam and A. Snowden, GL-equivariant modules over polynomial rings in infinitely many variables, Trans. Amer. Math. Soc. 368, no. 2 (2016), 1097–1158.
  • [59] S. V. Sam and A. Snowden, Gröbner methods for representations of combinatorial categories, J. Amer. Math. Soc. 30 (2017), 159–203.
  • [60] S. V. Sam and A. Snowden, Introduction to twisted commutative algebras, preprint, arXiv:1209.5122v1 [math.AC].
  • [61] T. Satoh, The abelianization of the congruence IA-automorphism group of a free group, Math. Proc. Cambridge Philos. Soc. 142 (2007), 239–248.
  • [62] L. Schwartz, Unstable Modules over the Steenrod Algebra and Sullivan’s Fixed Point Set Conjecture, Chicago Lect. Math., Univ. Chicago Press, Chicago, Ill., 1994.
  • [63] A. Scorichenko, Stable K-theory and functor homology, Ph.D. dissertation, Northwestern University, Evanston, Ill., 2000.
  • [64] W. van der Kallen, Homology stability for linear groups, Invent. Math. 60 (1980), 269–295.
  • [65] N. Wahl and O. Randal-Williams, Homological stability for automorphism groups, preprint, arXiv:1409.3541v3 [math.AT].
  • [66] J. C. H. Wilson, $\mathrm{FI}_{W}$-modules and stability criteria for representations of the classical Weyl groups, J. Algebra 420 (2014), 269–332.