Duke Mathematical Journal

Strichartz estimates in similarity coordinates and stable blowup for the critical wave equation

Roland Donninger

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We establish Strichartz estimates in similarity coordinates for the radial wave equation in three spatial dimensions with a (time-dependent) self-similar potential. As an application, we consider the critical wave equation and prove the asymptotic stability of the ordinary differential equations blowup profile in the energy space.

Article information

Source
Duke Math. J., Volume 166, Number 9 (2017), 1627-1683.

Dates
Received: 9 November 2015
Revised: 31 August 2016
First available in Project Euclid: 5 April 2017

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1491357654

Digital Object Identifier
doi:10.1215/00127094-0000009X

Mathematical Reviews number (MathSciNet)
MR3662440

Zentralblatt MATH identifier
1378.35050

Subjects
Primary: 35L05: Wave equation
Secondary: 35C06: Self-similar solutions

Keywords
critical wave equation blowup Strichartz estimate self-similarity type I blowup

Citation

Donninger, Roland. Strichartz estimates in similarity coordinates and stable blowup for the critical wave equation. Duke Math. J. 166 (2017), no. 9, 1627--1683. doi:10.1215/00127094-0000009X. https://projecteuclid.org/euclid.dmj/1491357654


Export citation

References

  • [1] M. Beceanu and M. Goldberg, Strichartz estimates and maximal operators for the wave equation in $\mathbb{R}^{3}$, J. Funct. Anal. 266 (2014), 1476–1510.
  • [2] P. Bizoń, T. Chmaj, and Z. Tabor, On blowup for semilinear wave equations with a focusing nonlinearity, Nonlinearity 17 (2004), 2187–2201.
  • [3] N. Burq, F. Planchon, J. G. Stalker, and A. S. Tahvildar-Zadeh, Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay, Indiana Univ. Math. J. 53 (2004), 1665–1680.
  • [4] O. Costin, R. Donninger, and I. Glogić, Mode stability of self-similar wave maps in higher dimensions, preprint, arXiv:1604.00303v3 [math.AP].
  • [5] O. Costin, R. Donninger, I. Glogić, and M. Huang, On the stability of self-similar solutions to nonlinear wave equations, Comm. Math. Phys. 343 (2016), 299–310.
  • [6] O. Costin, R. Donninger, and X. Xia, A proof for the mode stability of a self-similar wave map, Nonlinearity 29 (2016), 2451–2473.
  • [7] P. D’Ancona and L. Fanelli, Strichartz and smoothing estimates of dispersive equations with magnetic potentials, Comm. Partial Differential Equations 33 (2008), 1082–1112.
  • [8] P. D’Ancona and V. Pierfelice, On the wave equation with a large rough potential, J. Funct. Anal. 227 (2005), 30–77.
  • [9] P. Deift and E. Trubowitz, Inverse scattering on the line, Comm. Pure Appl. Math. 32 (1979), 121–251.
  • [10] R. Donninger, The radial wave operator in similarity coordinates, J. Math. Phys. 51 (2010), art. no. 023527.
  • [11] R. Donninger, On stable self-similar blowup for equivariant wave maps, Comm. Pure Appl. Math. 64 (2011), 1095–1147.
  • [12] R. Donninger, Stable self-similar blowup in energy supercritical Yang-Mills theory, Math. Z. 278 (2014), 1005–1032.
  • [13] R. Donninger, M. Huang, J. Krieger, and W. Schlag, Exotic blowup solutions for the $u^{5}$ focusing wave equation in $\mathbb{R}^{3}$, Michigan Math. J. 63 (2014), 451–501.
  • [14] R. Donninger and J. Krieger, Nonscattering solutions and blowup at infinity for the critical wave equation, Math. Ann. 357 (2013), 89–163.
  • [15] R. Donninger and B. Schörkhuber, Stable self-similar blow up for energy subcritical wave equations, Dyn. Partial Differ. Equ. 9 (2012), 63–87.
  • [16] R. Donninger and B. Schörkhuber, Stable blow up dynamics for energy supercritical wave equations, Trans. Amer. Math. Soc. 366, no. 4, (2014), 2167–2189.
  • [17] R. Donninger and B. Schörkhuber, On blowup in supercritical wave equations, Comm. Math. Phys. 346 (2016), 907–943.
  • [18] R. Donninger and B. Schörkhuber, Stable blowup for wave equations in odd space dimensions, preprint, arXiv:1504.00808v1 [math.AP].
  • [19] R. Donninger, B. Schörkhuber, and P. C. Aichelburg, On stable self-similar blow up for equivariant wave maps: The linearized problem, Ann. Henri Poincaré 13 (2012), 103–144.
  • [20] T. Duyckaerts, C. Kenig, and F. Merle, Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation, J. Eur. Math. Soc. (JEMS) 13 (2011), 533–599.
  • [21] T. Duyckaerts, C. Kenig, and F. Merle, Profiles of bounded radial solutions of the focusing, energy-critical wave equation, Geom. Funct. Anal. 22 (2012), 639–698.
  • [22] T. Duyckaerts, C. Kenig, and F. Merle, Universality of the blow-up profile for small type II blow-up solutions of the energy-critical wave equation: The nonradial case, J. Eur. Math. Soc. (JEMS) 14 (2012), 1389–1454.
  • [23] T. Duyckaerts, C. Kenig, and F. Merle, Classification of radial solutions of the focusing, energy-critical wave equation, Camb. J. Math. 1 (2013), 75–144.
  • [24] T. Duyckaerts, C. Kenig, and F. Merle, Profiles for bounded solutions of dispersive equations, with applications to energy-critical wave and Schrödinger equations, Commun. Pure Appl. Anal. 14 (2015), 1275–1326.
  • [25] T. Duyckaerts, C. Kenig, and F. Merle, Global existence for solutions of the focusing wave equation with the compactness property, Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016), 1675–1690.
  • [26] T. Duyckaerts, C. Kenig, and F. Merle, Solutions of the focusing nonradial critical wave equation with the compactness property, Ann. Sc. Norm. Super. Pisa Cl. Sci (5) 15 (2016), 731–808.
  • [27] T. Duyckaerts and F. Merle, Dynamics of threshold solutions for energy-critical wave equation, Int. Math. Res. Pap. IMRP 2008, art ID rpn002.
  • [28] K.-J. Engel and R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math. 194, Springer, New York, 2000.
  • [29] L. Grafakos, Classical Fourier Analysis, 3rd. ed., Grad. Texts in Math. 249, Springer, New York, 2014.
  • [30] M. Hillairet and P. Raphaël, Smooth type II blow-up solutions to the four-dimensional energy-critical wave equation, Anal. PDE 5 (2012), 777–829.
  • [31] J. Jendrej, Bounds on the speed of type II blow-up for the energy critical wave equation in the radial case, Int. Math. Res. Not. IMRN 2016, no. 21, 6656–6688.
  • [32] J. Jendrej, Construction of type II blow-up solutions for the energy-critical wave equation in dimension 5, J. Funct. Anal. 272 (2017), 866–917.
  • [33] T. Kato, Perturbation Theory for Linear Operators, reprint of the 1980 edition, Classics Math., Springer, Berlin, 1995.
  • [34] M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math. 120 (1998), 955–980.
  • [35] C. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math. 201 (2008), 147–212.
  • [36] R. Killip, B. Stovall, and M. Visan, Blowup behaviour for the nonlinear Klein-Gordon equation, Math. Ann. 358 (2014), 289–350.
  • [37] S. Klainerman and M. Machedon, Space-time estimates for null forms and the local existence theorem, Comm. Pure Appl. Math. 46 (1993), 1221–1268.
  • [38] J. Krieger, K. Nakanishi, and W. Schlag, Global dynamics away from the ground state for the energy-critical nonlinear wave equation, Amer. J. Math. 135 (2013), 935–965.
  • [39] J. Krieger, K. Nakanishi, and W. Schlag, Global dynamics of the nonradial energy-critical wave equation above the ground state energy, Discrete Contin. Dyn. Syst. 33 (2013), 2423–2450.
  • [40] J. Krieger, K. Nakanishi, and W. Schlag, Threshold phenomenon for the quintic wave equation in three dimensions, Comm. Math. Phys. 327 (2014), 309–332.
  • [41] J. Krieger and W. Schlag, On the focusing critical semi-linear wave equation, Amer. J. Math. 129 (2007), 843–913.
  • [42] J. Krieger and W. Schlag, Full range of blow up exponents for the quintic wave equation in three dimensions, J. Math. Pures Appl. (9) 101 (2014), 873–900.
  • [43] J. Krieger, W. Schlag, and D. Tataru, Slow blow-up solutions for the $H^{1}(\mathbb{R}^{3})$ critical focusing semilinear wave equation, Duke Math. J. 147 (2009), 1–53.
  • [44] J. Krieger and W. Wong, On type I blow-up formation for the critical NLW, Comm. Partial Differential Equations 39 (2014), 1718–1728.
  • [45] H. Lindblad and C. D. Sogge, On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal. 130 (1995), 357–426.
  • [46] J. Marzuola, J. Metcalfe, and D. Tataru, Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations, J. Funct. Anal. 255 (2008), 1497–1553.
  • [47] J. Marzuola, J. Metcalfe, D. Tataru, and M. Tohaneanu, Strichartz estimates on Schwarzschild black hole backgrounds, Comm. Math. Phys. 293 (2010), 37–83.
  • [48] F. Merle and H. Zaag, Determination of the blow-up rate for the semilinear wave equation, Amer. J. Math. 125 (2003), 1147–1164.
  • [49] F. Merle and H. Zaag, Determination of the blow-up rate for a critical semilinear wave equation, Math. Ann. 331 (2005), 395–416.
  • [50] F. Merle and H. Zaag, Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension, J. Funct. Anal. 253 (2007), 43–121.
  • [51] F. Merle and H. Zaag, Openness of the set of non-characteristic points and regularity of the blow-up curve for the 1 D semilinear wave equation, Comm. Math. Phys. 282 (2008), 55–86.
  • [52] F. Merle and H. Zaag, Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension, Amer. J. Math. 134 (2012), 581–648.
  • [53] F. Merle and H. Zaag, Isolatedness of characteristic points at blowup for a 1-dimensional semilinear wave equation, Duke Math. J. 161 (2012), 2837–2908.
  • [54] J. Metcalfe and D. Tataru, Global parametrices and dispersive estimates for variable coefficient wave equations, Math. Ann. 353 (2012), 1183–1237.
  • [55] A. B. Olde Daalhuis, “Hypergeometric function” in NIST Handbook of Mathematical Functions, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, D.C., 2010, 383–401.
  • [56] W. Schlag, A. Soffer, and W. Staubach, Decay for the wave and Schrödinger evolutions on manifolds with conical ends, I, Trans. Amer. Math. Soc. 362, no. 1, (2010), 19–52.
  • [57] C. D. Sogge, Lectures on Non-linear Wave Equations, 2nd ed., International Press, Boston, 2008.
  • [58] D. Tataru, Parametrices and dispersive estimates for Schrödinger operators with variable coefficients, Amer. J. Math. 130 (2008), 571–634.