## Duke Mathematical Journal

- Duke Math. J.
- Volume 166, Number 9 (2017), 1627-1683.

### Strichartz estimates in similarity coordinates and stable blowup for the critical wave equation

**Full-text: Access denied (no subscription detected) **

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

#### Abstract

We establish Strichartz estimates in similarity coordinates for the radial wave equation in three spatial dimensions with a (time-dependent) self-similar potential. As an application, we consider the critical wave equation and prove the asymptotic stability of the ordinary differential equations blowup profile in the energy space.

#### Article information

**Source**

Duke Math. J., Volume 166, Number 9 (2017), 1627-1683.

**Dates**

Received: 9 November 2015

Revised: 31 August 2016

First available in Project Euclid: 5 April 2017

**Permanent link to this document**

https://projecteuclid.org/euclid.dmj/1491357654

**Digital Object Identifier**

doi:10.1215/00127094-0000009X

**Mathematical Reviews number (MathSciNet)**

MR3662440

**Zentralblatt MATH identifier**

1378.35050

**Subjects**

Primary: 35L05: Wave equation

Secondary: 35C06: Self-similar solutions

**Keywords**

critical wave equation blowup Strichartz estimate self-similarity type I blowup

#### Citation

Donninger, Roland. Strichartz estimates in similarity coordinates and stable blowup for the critical wave equation. Duke Math. J. 166 (2017), no. 9, 1627--1683. doi:10.1215/00127094-0000009X. https://projecteuclid.org/euclid.dmj/1491357654

#### References

- [1] M. Beceanu and M. Goldberg,
*Strichartz estimates and maximal operators for the wave equation in $\mathbb{R}^{3}$*, J. Funct. Anal.**266**(2014), 1476–1510. - [2] P. Bizoń, T. Chmaj, and Z. Tabor,
*On blowup for semilinear wave equations with a focusing nonlinearity*, Nonlinearity**17**(2004), 2187–2201. - [3] N. Burq, F. Planchon, J. G. Stalker, and A. S. Tahvildar-Zadeh,
*Strichartz estimates for the wave and Schrödinger equations with potentials of critical decay*, Indiana Univ. Math. J.**53**(2004), 1665–1680. - [4] O. Costin, R. Donninger, and I. Glogić,
*Mode stability of self-similar wave maps in higher dimensions*, preprint, arXiv:1604.00303v3 [math.AP].arXiv: 1604.00303v3 - [5] O. Costin, R. Donninger, I. Glogić, and M. Huang,
*On the stability of self-similar solutions to nonlinear wave equations*, Comm. Math. Phys.**343**(2016), 299–310.Mathematical Reviews (MathSciNet): MR3475668

Digital Object Identifier: doi:10.1007/s00220-016-2588-9 - [6] O. Costin, R. Donninger, and X. Xia,
*A proof for the mode stability of a self-similar wave map*, Nonlinearity**29**(2016), 2451–2473. - [7] P. D’Ancona and L. Fanelli,
*Strichartz and smoothing estimates of dispersive equations with magnetic potentials*, Comm. Partial Differential Equations**33**(2008), 1082–1112. - [8] P. D’Ancona and V. Pierfelice,
*On the wave equation with a large rough potential*, J. Funct. Anal.**227**(2005), 30–77. - [9] P. Deift and E. Trubowitz,
*Inverse scattering on the line*, Comm. Pure Appl. Math.**32**(1979), 121–251. - [10] R. Donninger,
*The radial wave operator in similarity coordinates*, J. Math. Phys.**51**(2010), art. no. 023527. - [11] R. Donninger,
*On stable self-similar blowup for equivariant wave maps*, Comm. Pure Appl. Math.**64**(2011), 1095–1147. - [12] R. Donninger,
*Stable self-similar blowup in energy supercritical Yang-Mills theory*, Math. Z.**278**(2014), 1005–1032. - [13] R. Donninger, M. Huang, J. Krieger, and W. Schlag,
*Exotic blowup solutions for the $u^{5}$ focusing wave equation in $\mathbb{R}^{3}$*, Michigan Math. J.**63**(2014), 451–501. - [14] R. Donninger and J. Krieger,
*Nonscattering solutions and blowup at infinity for the critical wave equation*, Math. Ann.**357**(2013), 89–163. - [15] R. Donninger and B. Schörkhuber,
*Stable self-similar blow up for energy subcritical wave equations*, Dyn. Partial Differ. Equ.**9**(2012), 63–87. - [16] R. Donninger and B. Schörkhuber,
*Stable blow up dynamics for energy supercritical wave equations*, Trans. Amer. Math. Soc.**366**, no. 4, (2014), 2167–2189. - [17] R. Donninger and B. Schörkhuber,
*On blowup in supercritical wave equations*, Comm. Math. Phys.**346**(2016), 907–943. - [18] R. Donninger and B. Schörkhuber,
*Stable blowup for wave equations in odd space dimensions*, preprint, arXiv:1504.00808v1 [math.AP].arXiv: 1504.00808v1 - [19] R. Donninger, B. Schörkhuber, and P. C. Aichelburg,
*On stable self-similar blow up for equivariant wave maps: The linearized problem*, Ann. Henri Poincaré**13**(2012), 103–144. - [20] T. Duyckaerts, C. Kenig, and F. Merle,
*Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation*, J. Eur. Math. Soc. (JEMS)**13**(2011), 533–599. - [21] T. Duyckaerts, C. Kenig, and F. Merle,
*Profiles of bounded radial solutions of the focusing, energy-critical wave equation*, Geom. Funct. Anal.**22**(2012), 639–698. - [22] T. Duyckaerts, C. Kenig, and F. Merle,
*Universality of the blow-up profile for small type II blow-up solutions of the energy-critical wave equation: The nonradial case*, J. Eur. Math. Soc. (JEMS)**14**(2012), 1389–1454. - [23] T. Duyckaerts, C. Kenig, and F. Merle,
*Classification of radial solutions of the focusing, energy-critical wave equation*, Camb. J. Math.**1**(2013), 75–144. - [24] T. Duyckaerts, C. Kenig, and F. Merle,
*Profiles for bounded solutions of dispersive equations, with applications to energy-critical wave and Schrödinger equations*, Commun. Pure Appl. Anal.**14**(2015), 1275–1326. - [25] T. Duyckaerts, C. Kenig, and F. Merle,
*Global existence for solutions of the focusing wave equation with the compactness property*, Ann. Inst. H. Poincaré Anal. Non Linéaire**33**(2016), 1675–1690. - [26] T. Duyckaerts, C. Kenig, and F. Merle,
*Solutions of the focusing nonradial critical wave equation with the compactness property*, Ann. Sc. Norm. Super. Pisa Cl. Sci (5)**15**(2016), 731–808. - [27] T. Duyckaerts and F. Merle,
*Dynamics of threshold solutions for energy-critical wave equation*, Int. Math. Res. Pap. IMRP**2008**, art ID rpn002. - [28] K.-J. Engel and R. Nagel,
*One-parameter Semigroups for Linear Evolution Equations*, Grad. Texts in Math.**194**, Springer, New York, 2000. - [29] L. Grafakos,
*Classical Fourier Analysis*, 3rd. ed., Grad. Texts in Math.**249**, Springer, New York, 2014. - [30] M. Hillairet and P. Raphaël,
*Smooth type II blow-up solutions to the four-dimensional energy-critical wave equation*, Anal. PDE**5**(2012), 777–829. - [31] J. Jendrej,
*Bounds on the speed of type II blow-up for the energy critical wave equation in the radial case*, Int. Math. Res. Not. IMRN**2016**, no. 21, 6656–6688. - [32] J. Jendrej,
*Construction of type II blow-up solutions for the energy-critical wave equation in dimension 5*, J. Funct. Anal.**272**(2017), 866–917. - [33] T. Kato,
*Perturbation Theory for Linear Operators*, reprint of the 1980 edition, Classics Math., Springer, Berlin, 1995. - [34] M. Keel and T. Tao,
*Endpoint Strichartz estimates*, Amer. J. Math.**120**(1998), 955–980. - [35] C. Kenig and F. Merle,
*Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation*, Acta Math.**201**(2008), 147–212. - [36] R. Killip, B. Stovall, and M. Visan,
*Blowup behaviour for the nonlinear Klein-Gordon equation*, Math. Ann.**358**(2014), 289–350. - [37] S. Klainerman and M. Machedon,
*Space-time estimates for null forms and the local existence theorem*, Comm. Pure Appl. Math.**46**(1993), 1221–1268. - [38] J. Krieger, K. Nakanishi, and W. Schlag,
*Global dynamics away from the ground state for the energy-critical nonlinear wave equation*, Amer. J. Math.**135**(2013), 935–965. - [39] J. Krieger, K. Nakanishi, and W. Schlag,
*Global dynamics of the nonradial energy-critical wave equation above the ground state energy*, Discrete Contin. Dyn. Syst.**33**(2013), 2423–2450. - [40] J. Krieger, K. Nakanishi, and W. Schlag,
*Threshold phenomenon for the quintic wave equation in three dimensions*, Comm. Math. Phys.**327**(2014), 309–332.Mathematical Reviews (MathSciNet): MR3177940

Digital Object Identifier: doi:10.1007/s00220-014-1900-9 - [41] J. Krieger and W. Schlag,
*On the focusing critical semi-linear wave equation*, Amer. J. Math.**129**(2007), 843–913. - [42] J. Krieger and W. Schlag,
*Full range of blow up exponents for the quintic wave equation in three dimensions*, J. Math. Pures Appl. (9)**101**(2014), 873–900. - [43] J. Krieger, W. Schlag, and D. Tataru,
*Slow blow-up solutions for the $H^{1}(\mathbb{R}^{3})$ critical focusing semilinear wave equation*, Duke Math. J.**147**(2009), 1–53. - [44] J. Krieger and W. Wong,
*On type I blow-up formation for the critical NLW*, Comm. Partial Differential Equations**39**(2014), 1718–1728. - [45] H. Lindblad and C. D. Sogge,
*On existence and scattering with minimal regularity for semilinear wave equations*, J. Funct. Anal.**130**(1995), 357–426. - [46] J. Marzuola, J. Metcalfe, and D. Tataru,
*Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations*, J. Funct. Anal.**255**(2008), 1497–1553. - [47] J. Marzuola, J. Metcalfe, D. Tataru, and M. Tohaneanu,
*Strichartz estimates on Schwarzschild black hole backgrounds*, Comm. Math. Phys.**293**(2010), 37–83. - [48] F. Merle and H. Zaag,
*Determination of the blow-up rate for the semilinear wave equation*, Amer. J. Math.**125**(2003), 1147–1164. - [49] F. Merle and H. Zaag,
*Determination of the blow-up rate for a critical semilinear wave equation*, Math. Ann.**331**(2005), 395–416. - [50] F. Merle and H. Zaag,
*Existence and universality of the blow-up profile for the semilinear wave equation in one space dimension*, J. Funct. Anal.**253**(2007), 43–121. - [51] F. Merle and H. Zaag,
*Openness of the set of non-characteristic points and regularity of the blow-up curve for the 1 D semilinear wave equation*, Comm. Math. Phys.**282**(2008), 55–86. - [52] F. Merle and H. Zaag,
*Existence and classification of characteristic points at blow-up for a semilinear wave equation in one space dimension*, Amer. J. Math.**134**(2012), 581–648. - [53] F. Merle and H. Zaag,
*Isolatedness of characteristic points at blowup for a 1-dimensional semilinear wave equation*, Duke Math. J.**161**(2012), 2837–2908. - [54] J. Metcalfe and D. Tataru,
*Global parametrices and dispersive estimates for variable coefficient wave equations*, Math. Ann.**353**(2012), 1183–1237. - [55] A. B. Olde Daalhuis, “Hypergeometric function” in
*NIST Handbook of Mathematical Functions*, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, D.C., 2010, 383–401. - [56] W. Schlag, A. Soffer, and W. Staubach,
*Decay for the wave and Schrödinger evolutions on manifolds with conical ends, I*, Trans. Amer. Math. Soc.**362**, no. 1, (2010), 19–52. - [57] C. D. Sogge,
*Lectures on Non-linear Wave Equations*, 2nd ed., International Press, Boston, 2008. - [58] D. Tataru,
*Parametrices and dispersive estimates for Schrödinger operators with variable coefficients*, Amer. J. Math.**130**(2008), 571–634.

### More like this

- Scattering for the two-dimensional energy-critical wave equation

Ibrahim, Slim, Majdoub, Mohamed, Masmoudi, Nader, and Nakanishi, Kenji, Duke Mathematical Journal, 2009 - Blow-up of a critical Sobolev norm for energy-subcritical and energy-supercritical wave equations

Duyckaerts, Thomas and Yang, Jianwei, Analysis & PDE, 2018 - Finite-time degeneration of hyperbolicity without blowup for quasilinear wave equations

Speck, Jared, Analysis & PDE, 2017

- Scattering for the two-dimensional energy-critical wave equation

Ibrahim, Slim, Majdoub, Mohamed, Masmoudi, Nader, and Nakanishi, Kenji, Duke Mathematical Journal, 2009 - Blow-up of a critical Sobolev norm for energy-subcritical and energy-supercritical wave equations

Duyckaerts, Thomas and Yang, Jianwei, Analysis & PDE, 2018 - Finite-time degeneration of hyperbolicity without blowup for quasilinear wave equations

Speck, Jared, Analysis & PDE, 2017 - On the focusing energy-critical fractional nonlinear Schrödinger equations

Cho, Yonggeun, Hwang, Gyeongha, and Ozawa, Tohru, Advances in Differential Equations, 2018 - Existence of a solution for a system related to the singularity for the 3D Zakharov
system

Masselin, Vincent, Advances in Differential Equations, 2001 - Asymptotic stability of harmonic maps under the Schrödinger flow

Gustafson, Stephen, Kang, Kyungkeun, and Tsai, Tai-Peng, Duke Mathematical Journal, 2008 - Global low regularity solutions of quasi-linear wave equations

Lei, Zhen and Zhou, Yi, Advances in Differential Equations, 2008 - Time-weighted estimates in Lorentz spaces and self-similarity for wave equations with singular potentials

de Almeida, Marcelo F. and Ferreira, Lucas C. F., Analysis & PDE, 2017 - Self-similarity, symmetries and asymptotic behavior in Morrey spaces for a
fractional wave equation

de Almeida, Marcelo Fernandes and Ferreira, Lucas C.F., Differential and Integral Equations, 2012 - Non-Self-Similar Dead-Core Rate for the Fast Diffusion Equation with Dependent Coefficient

Zhu, Liping and Zhang, Zhengce, Abstract and Applied Analysis, 2014