Duke Mathematical Journal

Large greatest common divisor sums and extreme values of the Riemann zeta function

Andriy Bondarenko and Kristian Seip

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


It is shown that the maximum of $\vert \zeta(1/2+it)\vert $ on the interval $T^{1/2}\le t\le T$ is at least $\exp ((1/\sqrt{2}+o(1))\sqrt{\log T\log\log\log T/\log\log T})$. Our proof uses Soundararajan’s resonance method and a certain large greatest common divisor sum. The method of proof shows that the absolute constant $A$ in the inequality

\[\sup_{1\le n_{1}\lt \cdots\lt n_{N}}\sum_{k,{\ell}=1}^{N}\frac{\operatorname{gcd}(n_{k},n_{\ell})}{\sqrt{n_{k}n_{\ell}}}\ll N\exp (A\sqrt{\frac{\log N\log\log\logN}{\log\log N}}),\] established in a recent paper of ours, cannot be taken smaller than $1$.

Article information

Duke Math. J. Volume 166, Number 9 (2017), 1685-1701.

Received: 5 August 2015
Revised: 23 July 2016
First available in Project Euclid: 26 January 2017

Permanent link to this document

Digital Object Identifier

Primary: 11M06: $\zeta (s)$ and $L(s, \chi)$
Secondary: 11C20: Matrices, determinants [See also 15B36]

greatest common divisor sums Riemann zeta function extreme values


Bondarenko, Andriy; Seip, Kristian. Large greatest common divisor sums and extreme values of the Riemann zeta function. Duke Math. J. 166 (2017), no. 9, 1685--1701. doi:10.1215/00127094-0000005X. https://projecteuclid.org/euclid.dmj/1485400054.

Export citation


  • [1] C. Aistleitner, Lower bounds for the maximum of the Riemann zeta function along vertical lines, Math. Ann. 365 (2016), 473–496.
  • [2] C. Aistleitner, I. Berkes, and K. Seip, GCD sums from Poisson integrals and systems of dilated functions, J. Eur. Math. Soc. 17 (2015), 1517–1546.
  • [3] R. Balasubramanian and K. Ramachandra, On the frequency of Titchmarsh’s phenomenon for $\zeta(s)$, III, Proc. Indian Acad. Sci. Sect. A 86 (1977), 341–351.
  • [4] A. Bondarenko and K. Seip, GCD sums and complete sets of square-free numbers, Bull. Lond. Math. Soc. 47 (2015), 29–41.
  • [5] A. Bondarenko and K. Seip, “Note on the resonance method for the Riemann zeta function” in Operator Theory: Advances and Applications, Birkhäuser, Basel, to appear.
  • [6] J. Bourgain, Decoupling, exponential sums and the Riemann zeta function, J. Amer. Math. Soc. 30 (2017), 205–224.
  • [7] T. Dyer and G. Harman, Sums involving common divisors, J. Lond. Math. Soc. 34 (1986), 1–11.
  • [8] I. S. Gál, A theorem concerning Diophantine approximations, Nieuw Arch. Wiskunde 23 (1949), 13–38.
  • [9] A. Granville and K. Soundararajan, “Extreme values of $|\zeta(1+it)|$” in The Riemann Zeta Function and Related Themes: Papers in Honour of Professor K. Ramachandra, Ramanujan Math. Soc. Lect. Notes Ser. 2, Ramanujan Math. Soc., Mysore, 2006, 65–80.
  • [10] G. Harman, Metric Number Theory, London Math. Soc. Monogr. N.S. 18, Clarendon Press, Oxford Univ. Press, New York, 1998.
  • [11] T. Hilberdink, An arithmetical mapping and applications to $\Omega$-results for the Riemann zeta function, Acta Arith. 139 (2009), 341–367.
  • [12] J. F. Koksma, On a certain integral in the theory of uniform distribution, Nederl. Akad. Wetensch. Proc. Ser. A. 54/Indag. Math. 13 (1951), 285–287.
  • [13] Y. Lamzouri, On the distribution of extreme values of zeta and L-functions in the strip $1/2<\sigma<1$, Int. Math. Res. Not. IMRN 2011, no. 23, 5449–5503.
  • [14] N. Levinson, $\Omega$-theorems for the Riemann zeta-function, Acta Arith. 20 (1972), 317–330.
  • [15] M. Lewko and M. Radziwiłł, Refinements of Gál’s theorem and applications, Adv. Math. 305 (2017), 280–297.
  • [16] H. L. Montgomery, Extreme values of the Riemann zeta function, Comment. Math. Helv. 52 (1977), 511–518.
  • [17] K. Ramachandra and A. Sankaranarayanan, Note on a paper by H. L. Montgomery (Omega theorems for the Riemann zeta-function), Publ. Inst. Math. (Beograd) (N.S.) 50 (64) (1991), 51–59.
  • [18] K. Soundararajan, Extreme values of zeta and $L$-functions, Math. Ann. 342 (2008), 467–486.
  • [19] E. C. Titchmarsh, On an inequality satisfied by the zeta-function of Riemann, Proc. Lond. Math. Soc. 28 (1928), 70–80.
  • [20] E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, 2nd ed., Oxford Univ. Press, New York, 1986.