## Duke Mathematical Journal

### Algebraic Birkhoff factorization and the Euler–Maclaurin formula on cones

#### Abstract

We equip the space of lattice cones with a coproduct which makes it a cograded, coaugmented, connnected coalgebra. The exponential generating sum and exponential generating integral on lattice cones can be viewed as linear maps on this space with values in the space of meromorphic germs with linear poles at zero. We investigate the subdivision properties—reminiscent of the inclusion-exclusion principle for the cardinal on finite sets—of such linear maps and show that these properties are compatible with the convolution quotient of maps on the coalgebra. Implementing the algebraic Birkhoff factorization procedure on the linear maps under consideration, we factorize the exponential generating sum as a convolution quotient of two maps, with each of the maps in the factorization satisfying a subdivision property. A direct computation shows that the polar decomposition of the exponential generating sum on a smooth lattice cone yields an Euler–Maclaurin formula. The compatibility with subdivisions of the convolution quotient arising in the algebraic Birkhoff factorization then yields the Euler–Maclaurin formula for any lattice cone. This provides a simple formula for the interpolating factor by means of a projection formula.

#### Article information

Source
Duke Math. J. Volume 166, Number 3 (2017), 537-571.

Dates
Revised: 20 April 2016
First available in Project Euclid: 9 November 2016

https://projecteuclid.org/euclid.dmj/1478660420

Digital Object Identifier
doi:10.1215/00127094-3715303

#### Citation

Guo, Li; Paycha, Sylvie; Zhang, Bin. Algebraic Birkhoff factorization and the Euler–Maclaurin formula on cones. Duke Math. J. 166 (2017), no. 3, 537--571. doi:10.1215/00127094-3715303. https://projecteuclid.org/euclid.dmj/1478660420

#### References

• [1] A. Barvinok, Integer Points in Polyhedra, Zurich Lectures in Adv. Math., Eur. Math. Soc., Zurich, 2008.
• [2] N. Berline and M. Vergne, Local Euler-Maclaurin formula for polytopes, Mosc. Math. J. 7 (2007), 355–386.
• [3] N. Berline and M. Vergne, Local asymptotic Euler-Maclaurin expansion for Riemann sums over a semi-lattice polyhedron, preprint, arXiv:1502.01671v2 [math.CA].
• [4] M. Brion and M. Vergne, Lattice points in simple polytopes, J. Amer. Math. Soc. 10 (1997), 371–392.
• [5] J.-L. Brylinsky and B. Zhang, Equivariant Todd classes for toric varieties, preprint, arXiv:math/0311318v1 [math.AG].
• [6] S. E. Cappell and J. L. Shaneson, Genera of algebraic varieties and counting of lattice points, Bull. Amer. Math. Soc. 30 (1994), 62–69.
• [7] A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, Comm. Math. Phys. 199 (1988), 203–242.
• [8] C. De Concini and C. Procesi, Topics in Hyperplanes, Arrangements, Polytopes and Box-Splines, Universitext, Springer, New York, 2011.
• [9] W. Fulton, Introduction to Toric Varieties, Princeton Univ. Press, Princeton, 1993.
• [10] S. Garoufalidis and J. Pommersheim, Sum-integral interpolators and the Euler-Maclaurin formula for polytopes, Trans. Amer. Math. Soc. 364 (2012), 2933–2958.
• [11] V. Guillemin and S. Sternberg, Riemann sums over polytopes, Ann. Inst. Fourier 57 (2007), 2183–2195.
• [12] L. Guo, An Introduction to Rota-Baxter Algebra, Surv. Mod. Math. 4, Int. Press, Somerville, Mass., 2012.
• [13] L. Guo, S. Paycha, and B. Zhang, Conical zeta values and their double subdivision relations, Adv. Math. 252 (2014), 343–381.
• [14] L. Guo, S. Paycha, and B. Zhang, Laurent expansions and residue of multivariate meromorphic germs with linear poles: A geometric approach, preprint, arXiv:1501.00426v1 [math.CV].
• [15] L. Guo, S. Paycha, and B. Zhang, Renormalised conical zeta values, preprint, arXiv:1602.04190v1 [math-ph].
• [16] G. Hardy, Divergent Series, Oxford Univ. Press, Oxford, 1967.
• [17] J. Lawrence, Rational-function-valued valuations on polyhedra, DIMACS Ser., Discrete Math. Theoret. Comput. Sci. 6 (1991), 199–208.
• [18] V. I. Lomonosov (originator), “Positive cone” in Encyclopedia of Mathematics, http://www.encyclopediaofmath.org/index.php?title=Positive_cone&amp;oldid=15148 (accessed 6 September 2016).
• [19] J.-L. Loday and B. Vallette, Algebraic Operads, Grundlehren Math. Wiss. 346, Springer, Heidelberg, 2012.
• [20] D. Manchon, Hopf algebras, from basics to applications to renormalization, 2006, http://math.univ-bpclermont.fr/~manchon/biblio/bogota2002.pdf.
• [21] D. Manchon, “Hopf algebras in renormalization” in Handbook of Algebra, Vol. 5, North-Holland, Amsterdam, 2008.
• [22] A. Khovanskii and A. Pukhlikov, A Riemann-Roch theorem for integrals and sums of quasipolynomials over virtual polytopes, Algebra i Analiz 4 (1992), 188–216; English translation in St. Petersburg Math. J. 4 (1993), 789–812.
• [23] G. Ziegler, Lectures on Polytopes, 2nd ed., Grad. Texts in Math. 152, Springer, 1994.