Duke Mathematical Journal

K-stability for Fano manifolds with torus action of complexity $1$

Nathan Ilten and Hendrik Süß

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We consider Fano manifolds admitting an algebraic torus action with general orbit of codimension $1$. Using a recent result of Datar and Székelyhidi, we effectively determine the existence of Kähler–Ricci solitons for those manifolds via the notion of equivariant K-stability. This allows us to give new examples of Kähler–Einstein Fano threefolds and Fano threefolds admitting a nontrivial Kähler–Ricci soliton.

Article information

Source
Duke Math. J. Volume 166, Number 1 (2017), 177-204.

Dates
Received: 28 July 2015
Revised: 4 March 2016
First available in Project Euclid: 26 October 2016

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1477494164

Digital Object Identifier
doi:10.1215/00127094-3714864

Subjects
Primary: 32Q20: Kähler-Einstein manifolds [See also 53Cxx]
Secondary: 14L30: Group actions on varieties or schemes (quotients) [See also 13A50, 14L24, 14M17] 14J45: Fano varieties

Keywords
K-stability Kähler–Einstein metric $T$-varieties torus action Fano varieties

Citation

Ilten, Nathan; Süß, Hendrik. K-stability for Fano manifolds with torus action of complexity 1 . Duke Math. J. 166 (2017), no. 1, 177--204. doi:10.1215/00127094-3714864. https://projecteuclid.org/euclid.dmj/1477494164.


Export citation

References

  • [1] K. Altmann and J. Hausen, Polyhedral divisors and algebraic torus actions, Math. Ann. 334 (2006), 557–607.
  • [2] K. Altmann, J. Hausen, and H. Süss, Gluing affine torus actions via divisorial fans, Transform. Groups 13 (2008), 215–242.
  • [3] K. Altmann, N. O. Ilten, L. Petersen, H. Süß, and R. Vollmert, “The geometry of $T$-varieties,” Contributions to Algebraic Geometry, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012, 17–69.
  • [4] R. J. Berman and D. W. Nystrom, Complex optimal transport and the pluripotential theory of Kähler-Ricci solitons, preprint, arXiv:1401.8264v1 [math.DG].
  • [5] X. Chen, S. Donaldson, and S. Sun, Kähler-Einstein metrics and stability, Int. Math. Res. Notices IMRN 2014, no. 8, 2119–2125.
  • [6] X. Chen, S. Donaldson, and S. Sun, Kähler-Einstein metrics on Fano manifolds, I: Approximation of metrics with cone singularities, J. Amer. Math. Soc. 28 (2015), 183–197.
  • [7] X. Chen, S. Donaldson, and S. Sun, Kähler-Einstein metrics on Fano manifolds, II: Limits with cone angle less than $2\pi$, J. Am. Math. Soc. 28 (2015), 199–234.
  • [8] X. Chen, S. Donaldson, and S. Sun, Kähler-Einstein metrics on Fano manifolds, III: Limits as cone angle approaches $2\pi$ and completion of the main proof, J. Amer. Math. Soc. 28 (2015), 235–278.
  • [9] V. Datar and G. Székelyhidi, Kähler-Einstein metrics along the smooth continuity method, Geom. Funct. Anal., published electronically 10 August 2016.
  • [10] R. Hartshorne, Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1977.
  • [11] J. Hausen and H. Süß, The Cox ring of an algebraic variety with torus action, Adv. Math. 225 (2010), 977–1012.
  • [12] N. O. Ilten and H. Süß, Polarized complexity-1 $T$-varieties, Michigan Math. J. 60 (2011), 561–578.
  • [13] N. O. Ilten and R. Vollmert, Deformations of rational $T$-varieties, J. Algebraic Geom. 21 (2012), 531–562.
  • [14] N. O. Ilten, Upgrading and downgrading torus actions, J. Pure Appl. Algebra 217 (2013), 1583–1604.
  • [15] A. Liendo and H. Süß, Normal singularities with torus actions, Tohoku Math. J. 65 (2013), 105–130.
  • [16] S. Mori and S. Mukai, Classification of Fano $3$-folds with$B_{2}\geq2$, Manuscripta Math. 36 (1981/82), 147–162.
  • [17] L. Petersen and H. Süß, Torus invariant divisors, Israel J. Math. 182 (2011), 481–504.
  • [18] K. Schwede and K. E. Smith, Globally $F$-regular and log Fano varieties, Adv. Math. 224 (2010), 863–894.
  • [19] K. E. Smith, Globally F-regular varieties: Applications to vanishing theorems for quotients of Fano varieties, Michigan Math. J. 48 (2000), 553–572.
  • [20] H. Süß, Kähler-Einstein metrics on symmetric Fano T-varieties, Adv. Math. 246 (2013), 100–113.
  • [21] H. Süß, Fano threefolds with 2-torus action—a picture book, Doc. Math. 19 (2014), 905–914.
  • [22] G. Tian, K-Stability and Kähler-Einstein metrics, Comm. Pure Appl. Math. 68 (2015), 1085–1156.
  • [23] G. Tian and X. Zhu, A new holomorphic invariant and uniqueness of Kähler-Ricci solitons, Comment. Math. Helv. 77 (2002), 297–325.
  • [24] F. Wang, B. Zhou, and X. Zhu, Modified Futaki invariant and equivariant Riemann-Roch formula, Adv. Math. 289 (2016), 1205–1235.
  • [25] X.-J. Wang and X. Zhu, Kähler–Ricci solitons on toric manifolds with positive first Chern class, Adv. Math. 188 (2004), 87–103.