Duke Mathematical Journal

Borelian subgroups of simple Lie groups

Nicolas de Saxcé

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


We prove that in a simple real Lie group, there is no Borel measurable dense subgroup of intermediate Hausdorff dimension.

Article information

Duke Math. J., Volume 166, Number 3 (2017), 573-604.

Received: 27 February 2015
Revised: 6 April 2016
First available in Project Euclid: 19 October 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 22E30: Analysis on real and complex Lie groups [See also 33C80, 43-XX]
Secondary: 28A78: Hausdorff and packing measures 05E15: Combinatorial aspects of groups and algebras [See also 14Nxx, 22E45, 33C80]

Lie groups Hausdorff dimension product sets


de Saxcé, Nicolas. Borelian subgroups of simple Lie groups. Duke Math. J. 166 (2017), no. 3, 573--604. doi:10.1215/00127094-3715410. https://projecteuclid.org/euclid.dmj/1476893153

Export citation


  • [1] J. Bourgain, On the Erdős-Volkmann and Katz-Tao ring conjectures, Geom. Funct. Anal. 13 (2003), 334–365.
  • [2] J. Bourgain, The discretized sum-product and projection theorems, J. Anal. Math. 112 (2010), 193–236.
  • [3] J. Bourgain and A. Gamburd, On the spectral gap for finitely-generated subgroups of $\rm SU(2)$, Invent. Math. 171 (2008), 83–121.
  • [4] E. Breuillard and T. Gelander, On dense free subgroups of Lie groups, J. Algebra 261 (2003), 448–467.
  • [5] R. O. Davies, Fields of dimension $d$, in preparation.
  • [6] N. de Saxcé, Subgroups of fractional dimension in nilpotent or solvable Lie groups, Mathematika 59 (2013), 497–511.
  • [7] N. de Saxcé, A product theorem in simple Lie groups, Geom. Funct. Anal. 25 (2015), 915–941.
  • [8] G. A. Edgar and C. Miller, Borel subrings of the reals, Proc. Amer. Math. Soc. 131 (2003), 1121–1129.
  • [9] P. Erdős and K. J. Volkmann, Additive Gruppen mit vorgegebener Hausdorffscher Dimension, J. Reine Angew. Math 221 (1966), 203–208.
  • [10] K. J. Falconer, Classes of sets with large intersection, Mathematika 32 (1985), 191–205.
  • [11] N. H. Katz and T. Tao, Some connections between Falconer’s distance set conjecture and sets of Furstenburg type, New York J. Math. 7 (2001), 149–187.
  • [12] E. Lindenstrauss and N. de Saxcé, Hausdorff dimension and subgroups of $\rm SU(2)$, Israel J. Math. 209 (2015), 335–354.
  • [13] S. Łojasiewicz, Ensembles semi-analytiques, preprint, https://perso.univ-rennes1.fr/michel.coste (accessed 15 September 2016).
  • [14] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability, Cambridge Stud. Adv. Math. 44, Cambridge Univ. Press, Cambridge, 1995.
  • [15] T. C. Tao, Product set estimates for non-commutative groups, Combinatorica 28 (2008), 547–594.