Duke Mathematical Journal

Hausdorff dimension of singular vectors

Yitwah Cheung and Nicolas Chevallier

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We prove that the set of singular vectors in Rd, d2, has Hausdorff dimension d2d+1 and that the Hausdorff dimension of the set of ε-Dirichlet improvable vectors in Rd is roughly d2d+1 plus a power of ε between d2 and d. As a corollary, the set of divergent trajectories of the flow by diag(et,,et,edt) acting on SLd+1(R)/SLd+1(Z) has Hausdorff codimension dd+1. These results extend the work of the first author.

Article information

Source
Duke Math. J. Volume 165, Number 12 (2016), 2273-2329.

Dates
Received: 20 February 2014
Revised: 13 September 2015
First available in Project Euclid: 6 September 2016

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1473186401

Digital Object Identifier
doi:10.1215/00127094-3477021

Mathematical Reviews number (MathSciNet)
MR3544282

Zentralblatt MATH identifier
1358.11078

Subjects
Primary: 11J13: Simultaneous homogeneous approximation, linear forms 11K55: Metric theory of other algorithms and expansions; measure and Hausdorff dimension [See also 11N99, 28Dxx]
Secondary: 37A17: Homogeneous flows [See also 22Fxx]

Keywords
singular vectors self-similar coverings multidimensional continued fractions simultaneous Diophantine approximation best approximations divergent trajectories

Citation

Cheung, Yitwah; Chevallier, Nicolas. Hausdorff dimension of singular vectors. Duke Math. J. 165 (2016), no. 12, 2273--2329. doi:10.1215/00127094-3477021. https://projecteuclid.org/euclid.dmj/1473186401


Export citation

References

  • [1] J. S. Athreya and J. Chaika, The Hausdorff dimension of non-uniquely ergodic directions in $H(2)$ is almost everywhere $1/2$, Geom. Topol. 19 (2015), 3537–3563.
  • [2] R. C. Baker, Singular $n$-tuples and Hausdorff dimension, Math. Proc. Cambridge Philos. Soc. 81 (1977), 377–385.
  • [3] R. C. Baker, Singular $n$-tuples and Hausdorff dimension, II, Math. Proc. Cambridge Philos. Soc. 111 (1992), 577–584.
  • [4] J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge Tracts in Math. and Math. Phys. 45, Cambridge Univ. Press, New York, 1957.
  • [5] Y. Cheung, Hausdorff dimension of the set of points on divergent trajectories of a homogeneous flow on a product space, Ergodic Theory Dynam. Systems 27 (2007), 65–85.
  • [6] Y. Cheung, Hausdorff dimension of the set of singular pairs, Ann. of Math. (2) 173 (2011), 127–167.
  • [7] Y. Cheung, P. Hubert, and H. Masur, Dichotomy for the Hausdorff dimension of the set of nonergodic directions, Invent. Math. 183 (2011), 337–383.
  • [8] N. Chevallier, Meilleures approximations diophantiennes d’un élément du tore $T^{d}$, Acta Arith. 97 (2001), 219–240.
  • [9] N. Chevallier, Best simultaneous Diophantine approximations and multidimensional continued fraction expansions, Mosc. J. Comb. Number Theory 3 (2013), 3–56.
  • [10] S. G. Dani, Divergent trajectories of flows on homogeneous spaces and Diophantine approximations, J. Reine Angew. Math. 359 (1985), 55–89. Correction, J. Reine Angew. Math. 360 (1985), 214.
  • [11] H. Davenport and W. M. Schmidt, “Dirichlet’s theorem on diophantine approximation” in Symposia Mathematica, Vol. IV (INDAM, Rome, 1968/69), Academic Press, London, 1970, 113–132.
  • [12] H. Davenport and W. M. Schmidt, Dirichlet’s theorem on diophantine approximation, II, Acta Arith. 16 (1969/1970), 413–424.
  • [13] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, New York, 1979.
  • [14] S. Kadyrov, D. Y. Kleinbock, E. Lindenstrauss, and G. A. Margulis, Singular systems of linear forms and non-escape of mass in the space of lattices, to appear in J. Anal. Math., preprint, arXiv:1407.5310v2 [math.DS].
  • [15] S. Kadyrov and A. D. Pohl, Amount of failure of upper-semicontinuity of entropy in non-compact rank-one situations, and Hausdorff dimension, Ergodic Theory Dynam. Systems, published electronically 6 October 2015.
  • [16] A. Khintchine, Über eine klasse linearer diophantische approximationen, Rend. Circ. Mat. Palermo 50 (1926), 170–195.
  • [17] D. Kleinbock and B. Weiss, “Friendly measures, homogeneous flows, and singular vectors” in Algebraic and Topological Dynamics, Contemp. Math. 385, Amer. Math. Soc., Providence, 2005, 281–292.
  • [18] D. Kleinbock and B. Weiss, Dirichlet’s theorem on Diophantine approximation and homogeneous flows, J. Mod. Dyn. 2 (2008), 43–62.
  • [19] J. C. Lagarias, “Some new results in simultaneous Diophantine approximation” in Proc. Queen’s University Number Theory Conference 1979, Queen’s Papers in Pure Appl. Math. 54, Queen’s Univ., Kingston, 1980, 453–474.
  • [20] J. C. Lagarias, Best simultaneous Diophantine approximations, II: Behavior of consecutive best approximations, Pacific J. Math. 102 (1982), 61–88.
  • [21] H. Masur, Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J. 66 (1992), 387–442.
  • [22] H. Masur and J. Smillie, Hausdorff dimension of sets of nonergodic measured foliations, Ann. of Math. (2) 134 (1991), 455–543.
  • [23] N. G. Moshchevitin, “Best Diophantine approximations: the phenomenon of degenerate dimension” in Surveys in Geometry and Number Theory: Reports on Contemporary Russian Mathematics, London Math. Soc. Lecture Note Ser. 338, Cambridge Univ. Press, Cambridge, 2007, 158–182.
  • [24] B. P. Rynne, A lower bound for the Hausdorff dimension of sets of singular n-tuples, Math. Proc. Cambridge Philos. Soc. 107 (1990), 387–394.
  • [25] W. M. Schmidt, Asymptotic formulae for point lattices of bounded determinant and subspaces of bounded height, Duke Math. J. 35 (1968), 327–339.
  • [26] W. M. Schmidt, Diophantine Approximation, Lecture Notes in Math. 785, Springer, Berlin, 1980.
  • [27] W. M. Schmidt, The distribution of sublattices of $\mathbb{Z}^{m}$, Monatsh. Math. 125 (1998), 37–81.
  • [28] B. L. van der Waerden, Die Reduktionstheorie der positiven quadratishen Formen, Acta. Math. 96 (1956), 265–309.
  • [29] B. Weiss, Divergent trajectories on noncompact parameter spaces, Geom. Funct. Anal. 14 (2004), 94–149.
  • [30] B. Weiss, Divergent trajectories and $\mathbb{Q}$-rank, Israel J. Math. 152 (2006), 221–227.
  • [31] L. Yang, Hausdorff dimension of divergent diagonal geodesics on product of finite volume hyperbolic spaces, preprint, arXiv:1303.5993v5 [math.DS].