Duke Mathematical Journal

Derived equivalences for rational Cherednik algebras

Ivan Losev

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


Let W be a complex reflection group, and let Hc(W) be the rational Cherednik algebra for W depending on a parameter c. One can consider the category O for Hc(W). We prove a conjecture of Rouquier that the categories O for Hc(W) and Hc'(W) are derived-equivalent, provided that the parameters c,c' have integral difference. Two main ingredients of the proof are a connection between the Ringel duality and Harish-Chandra bimodules and an analogue of a deformation technique developed by the author and Bezrukavnikov. We also show that some of the derived equivalences we construct are perverse.

Article information

Duke Math. J., Volume 166, Number 1 (2017), 27-73.

Received: 23 September 2014
Revised: 16 September 2015
First available in Project Euclid: 1 September 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 16E99: None of the above, but in this section
Secondary: 16G99: None of the above, but in this section

rational Cherednik algebra category $\mathcal{O}$ derived equivalence Harish-Chandra bimodule perverse equivalence


Losev, Ivan. Derived equivalences for rational Cherednik algebras. Duke Math. J. 166 (2017), no. 1, 27--73. doi:10.1215/00127094-3674223. https://projecteuclid.org/euclid.dmj/1472743767

Export citation


  • [1] Y. Berest and O. Chalykh, Quasi-invariants of complex reflection groups, Compos. Math. 147 (2011), 965–1002.
  • [2] Y. Berest, P. Etingof, and V. Ginzburg, Cherednik algebras and differential operators on quasi-invariants, Duke Math. J. 118 (2003), 279–337.
  • [3] R. Bezrukavnikov and P. Etingof, Parabolic induction and restriction functors for rational Cherednik algebras, Selecta Math. (N.S.) 14 (2009), 397–425.
  • [4] R. Bezrukavnikov and I. Losev, Etingof conjecture for quantized quiver varieties, preprint, arXiv:1309.1716v3 [math.RT].
  • [5] M. Boyarchenko, Quantization of minimal resolutions of Kleinian singularities, Adv. Math. 211 (2007), 244–265.
  • [6] T. Braden, N. Proudfoot, and B. Webster, Quantizations of conical symplectic resolutions, I: Local and global structure, preprint, arXiv:1208.3863 [math.RT].
  • [7] M. Broué, G. Malle, and R. Rouquier, Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math. 500 (1998), 127–190.
  • [8] P. Etingof, Symplectic reflection algebras and affine Lie algebras, Mosc. Math. J. 12 (2012), 543–565, 668–669.
  • [9] P. Etingof and V. Ginzburg, Symplectic reflection algebras, Calogero–Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), 243–348.
  • [10] V. Ginzburg, N. Guay, E. Opdam, and R. Rouquier, On the category $\mathcal{O}$ for rational Cherednik algebras, Invent. Math. 154 (2003), 617–651.
  • [11] I. G. Gordon and I. Losev, On category $\mathcal{O}$ for cyclotomic rational Cherednik algebras, J. Eur. Math. Soc. (JEMS) 16 (2014), 1017–1079.
  • [12] M. P. Holland, Quantization of the Marsden-Weinstein reduction for extended Dynkin quivers, Ann. Sci. Éc. Norm. Supér. (4) 32 (1999), 813–834.
  • [13] I. Losev, $1$-dimensional representations and parabolic induction for W-algebras, Adv. Math. 226 (2011), 4841–4883.
  • [14] I. Losev, Completions of symplectic reflection algebras, Selecta Math. (N.S.) 18 (2012), 179–251.
  • [15] I. Losev, On isomorphisms of certain functors for Cherednik algebras, Represent. Theory 17 (2013), 247–262.
  • [16] I. Losev, Finite-dimensional quotients of Hecke algebras, Algebra Number Theory 9 (2015), 493–502.
  • [17] I. Losev, Proof of Varagnolo-Vasserot conjecture on cyclotomic categories $\mathcal{O}$, Selecta. Math. (N.S.) 22 (2016), 631–668.
  • [18] I. Losev, Bernstein inequality and holonomic modules, with an appendix by P. Etingof and the author, preprint, arXiv:1501.01260v3 [math.RT].
  • [19] I. Losev, Supports of simple modules in cyclotomic Cherednik categories $\mathcal{O}$, preprint, arXiv:1509.00526v1 [math.RT].
  • [20] R. Rouquier, “Derived equivalences and finite dimensional algebras” in International Congress of Mathematicians, II, Eur. Math. Soc., Zürich, 2006, 191–221.
  • [21] R. Rouquier, $q$-Schur algebras and complex reflection groups, Mosc. Math. J. 8 (2008), 119–158.
  • [22] R. Rouquier, P. Shan, M. Varagnolo, and E. Vasserot, Categorifications and cyclotomic rational double affine Hecke algebras, Invent. Math. 204 (2016), 671–786.
  • [23] P. Shan, Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), 147–182.
  • [24] P. Shan and E. Vasserot, Heisenberg algebras and rational double affine Hecke algebras, J. Amer. Math. Soc. 25 (2012), 959–1031.