Duke Mathematical Journal

A Landau–Ginzburg mirror theorem without concavity

Jérémy Guéré

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We provide a mirror symmetry theorem in a range of cases where state-of-the-art techniques that rely on concavity or convexity do not apply. More specifically, we work on a family of FJRW potentials (named for the Fan, Jarvis, Ruan, and Witten quantum singularity theory) which is viewed as the counterpart of a nonconvex Gromov–Witten potential via the physical Landau–Ginzburg/Calabi–Yau (LG/CY) correspondence. The main result provides an explicit formula for Polishchuk and Vaintrob’s virtual cycle in genus zero. In the nonconcave case of the so-called chain invertible polynomials, it yields a compatibility theorem with the FJRW virtual cycle and a proof of mirror symmetry for FJRW theory.

Article information

Source
Duke Math. J., Volume 165, Number 13 (2016), 2461-2527.

Dates
Received: 1 December 2013
Revised: 1 October 2015
First available in Project Euclid: 12 May 2016

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1463080786

Digital Object Identifier
doi:10.1215/00127094-3477235

Mathematical Reviews number (MathSciNet)
MR3546967

Zentralblatt MATH identifier
1354.14081

Subjects
Primary: 14N35: Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants [See also 53D45]
Secondary: 14J33: Mirror symmetry [See also 11G42, 53D37]

Keywords
mirror symmetry FJRW theory nonconcavity non-concavity virtual cycle quantum product matrix factorization LG model spin curves recursive complex invertible polynomial chain polynomial Givental’s formalism J-function

Citation

Guéré, Jérémy. A Landau–Ginzburg mirror theorem without concavity. Duke Math. J. 165 (2016), no. 13, 2461--2527. doi:10.1215/00127094-3477235. https://projecteuclid.org/euclid.dmj/1463080786


Export citation

References

  • [1] D. Abramovich and A. Vistoli, Compactifying the space of stable maps, J. Amer. Math. Soc. 15 (2002), 27–75.
  • [2] P. Berglund and T. Hübsch, A generalized construction of mirror manifolds, Nuclear Phys. B 393 (1993), 377–391.
  • [3] H.-L. Chang, J. Li, and W.-P. Li, Witten’s top Chern class via cosection localization, Invent. Math. 200 (2015), 1015–1063.
  • [4] A. Chiodo, The Witten top Chern class via $K$-theory, J. Algebraic Geom. 15 (2006), 681–707.
  • [5] A. Chiodo, Towards an enumerative geometry of the moduli space of twisted curves and $r$th roots, Compos. Math. 144 (2008), 1461–1496.
  • [6] A. Chiodo, H. Iritani, and Y. Ruan, Landau–Ginzburg/Calabi–Yau correspondence, global mirror symmetry and Orlov equivalence, Publ. Math. Inst. Hautes Études Sci. 119 (2014), 127–216.
  • [7] A. Chiodo and Y. Ruan, Landau–Ginzburg/Calabi–Yau correspondence for quintic three-folds via symplectic transformations, Invent. Math. 182 (2010), 117–165.
  • [8] A. Chiodo and Y. Ruan, A global mirror symmetry framework for the Landau–Ginzburg/Calabi–Yau correspondence, Ann. Inst. Fourier (Grenoble) 61 (2011), 2803–2864.
  • [9] A. Chiodo and Y. Ruan, LG/CY correspondence: The state space isomorphism, Adv. Math. 227 (2011), 2157–2188.
  • [10] A. Chiodo and D. Zvonkine, Twisted $r$-spin potential and Givental’s quantization, Adv. Theor. Math. Phys. 13 (2009), 1335–1369.
  • [11] T. Coates, A. Corti, H. Iritani, and H.-H. Tseng, Computing genus-zero twisted Gromov–Witten invariants, Duke Math. J. 147 (2009), 377–438.
  • [12] T. Coates, A. Gholampour, H. Iritani, Y. Jiang, P. Johnson, and C. Manolache, The quantum Lefschetz hyperplane principle can fail for positive orbifold hypersurfaces, Math. Res. Lett. 19 (2012), 997–1005.
  • [13] T. Coates and A. Givental, Quantum Riemann–Roch, Lefschetz and Serre, Ann. of Math. (2) 165 (2007), 15–53.
  • [14] C. Faber, Program to compute intersections on the moduli space of pointed curves, preprint, math.stanford.edu/~vakil/programs/index.html (accessed 22 March 2016).
  • [15] C. Faber, S. Shadrin, and D. Zvonkine, Tautological relations and the $r$-spin Witten conjecture, Ann. Sci. Éc. Norm. Supér. (4) 43 (2010), 621–658.
  • [16] H. Fan, T. Jarvis, and Y. Ruan, The Witten equation, mirror symmetry, and quantum singularity theory, Ann. of Math. (2) 178 (2013), 1–106.
  • [17] H. Fan, T. Jarvis, and Y. Ruan, The Witten equation and its virtual fundamental cycle, preprint, arXiv:0712.4025v3 [math.AG].
  • [18] H. Fan and Y. Shen, Quantum ring of singularity $X^{p}+XY^{q}$, Michigan Math. J. 62 (2013), 185–207.
  • [19] W. Fulton and S. Lang, Riemann–Roch Algebra, Grundlehren Math. Wiss. 277 Springer, New York, 1985.
  • [20] S. Gährs, “Picard–Fuchs equations of special one-parameter families of invertible polynomials” in Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds, Fields Inst. Commun. 67, Springer, New York, 2013, 285–310.
  • [21] A. Givental, “A mirror theorem for toric complete intersections” in Topological Field Theory, Primitive Forms and Related Topics (Kyoto, 1996), Progr. Math. 160, Birkhaüser, Boston, 1998, 141–175.
  • [22] A. Givental, “Symplectic geometry of Frobenius structures” in Frobenius Manifolds (Bonn, 2002), Aspects Math. E36, Vieweg, Wiesbaden, 2004, 91–112.
  • [23] M. L. Green, A new proof of the explicit Noether–Lefschetz theorem, J. Differential Geom. 27 (1988), 155–159.
  • [24] M. A. Guest, From Quantum Cohomology to Integrable Systems, Oxf. Grad. Texts Math. 15, Oxford Univ. Press, Oxford, 2008.
  • [25] M. Krawitz, FJRW rings and Landau–Ginzburg mirror symmetry, Ph.D. dissertation, University of Michigan, Ann Arbor, Mich., 2010.
  • [26] M. Krawitz and Y. Shen, Landau–Ginzburg/Calabi–Yau correspondence of all genera for elliptic orbifold $p^{1}$, preprint, arXiv:1106.6270v1 [math.AG].
  • [27] M. Kreuzer, The mirror map for invertible LG models, Phys. Lett. B 328 (1994), 312–318.
  • [28] M. Kreuzer and H. Skarke, On the classification of quasihomogeneous functions, Comm. Math. Phys. 150 (1992), 137–147.
  • [29] B. H. Lian, K. Liu, and S.-T. Yau, Mirror principle, I, Asian J. Math. 1 (1997), 729–763.
  • [30] T. Mochizuki, The virtual class of the moduli stack of stable $r$-spin curves, Comm. Math. Phys. 264 (2006), 1–40.
  • [31] D. R. Morrison, Picard–Fuchs equations and mirror maps for hypersurfaces, preprint, arXiv:hep-th/9111025v1.
  • [32] A. Polishchuk and A. Vaintrob, Chern characters and Hirzebruch–Riemann–Roch formula for matrix factorizations, Duke Math. J. 161 (2012), 1863–1926.
  • [33] A. Polishchuk and A. Vaintrob, Matrix factorizations and cohomological field theories, preprint, arXiv:1105.2903v4 [math.AG].
  • [34] E. Witten, Phases of $N=2$ theories in two dimensions, Nuclear Phys. B 403 (1993), 159–222.
  • [35] A. Zinger, Standard versus reduced genus-one Gromov–Witten invariants, Geom. Topol. 12 (2008), 1203–1241.