Duke Mathematical Journal

From pro-p Iwahori–Hecke modules to (φ,Γ)-modules, I

Elmar Grosse-Klönne

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

Let o be the ring of integers in a finite extension K of Qp, and let k be its residue field. Let G be a split reductive group over Qp, and let T be a maximal split torus in G. Let H(G,I0) be the pro-p Iwahori–Hecke o-algebra. Given a semi-infinite reduced chamber gallery (alcove walk) C() in the T-stable apartment, a period ϕN(T) of C() of length r, and a homomorphism τ:Zp×T compatible with ϕ, we construct a functor from the category Modfin(H(G,I0)) of finite-length H(G,I0)-modules to étale (φr,Γ)-modules over Fontaine’s ring OE. If G=GLd+1(Qp), then there are essentially two choices of (C(),ϕ,τ) with r=1, both leading to a functor from Modfin(H(G,I0)) to étale (φ,Γ)-modules and hence to GalQp-representations. Both induce a bijection between the set of absolutely simple supersingular H(G,I0)ok-modules of dimension d+1 and the set of irreducible representations of GalQp over k of dimension d+1. We also compute these functors on modular reductions of tamely ramified locally unitary principal series representations of G over K. For d=1, we recover Colmez’s functor (when restricted to o-torsion GL2(Qp)-representations generated by their pro-p Iwahori invariants).

Article information

Source
Duke Math. J., Volume 165, Number 8 (2016), 1529-1595.

Dates
Received: 14 February 2014
Revised: 17 July 2015
First available in Project Euclid: 25 February 2016

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1456412785

Digital Object Identifier
doi:10.1215/00127094-3450101

Mathematical Reviews number (MathSciNet)
MR3504178

Zentralblatt MATH identifier
1364.11103

Subjects
Primary: 11F85: $p$-adic theory, local fields [See also 14G20, 22E50]
Secondary: 11F80: Galois representations 11F70: Representation-theoretic methods; automorphic representations over local and global fields

Keywords
Mod $p$ representation Galois representation Iwahori–Hecke algebra supersingular module modular local Langlands program

Citation

Grosse-Klönne, Elmar. From pro- $p$ Iwahori–Hecke modules to $(\varphi,\Gamma)$ -modules, I. Duke Math. J. 165 (2016), no. 8, 1529--1595. doi:10.1215/00127094-3450101. https://projecteuclid.org/euclid.dmj/1456412785


Export citation

References

  • [1] P. N. Balister and S. Howson, Note on Nakayama’s lemma for compact $\Lambda$-modules, Asian J. Math. 1 (1997), 224–229.
  • [2] L. Berger, On some modular representations of the Borel subgroup of $\operatorname{GL}_{2}({\mathbb{Q}}_{p})$, Compos. Math. 146 (2010), 58–80.
  • [3] C. Breuil and F. Herzig, Ordinary representations of $G({\mathbb{Q}}_{p})$ and fundamental algebraic representations, Duke Math. J. 164 (2015), 1271–1352.
  • [4] R. W. Carter and G. Lusztig, Modular representations of finite groups of Lie type, Proc. Lond. Math. Soc. (3) 32 (1976), 347–384.
  • [5] P. Colmez, $(\phi,\Gamma)$-modules et représentations du mirabolique de $\operatorname{GL}_{2}({\mathbb{Q}}_{p})$, Astérisque 330 (2010), 61–153.
  • [6] P. Colmez, Représentations de $\operatorname{GL}_{2}({\mathbb{Q}}_{p})$ et $(\phi,\Gamma)$-modules, Astérisque 330 (2010), 281–509.
  • [7] M. Emerton, On a class of coherent rings, with applications to the smooth representation theory of $\operatorname{GL}_{2}(Q_{p})$ in characteristic $p$, preprint, 2008.
  • [8] J.-M. Fontaine, “Représentations $p$-adiques des corps locaux, I” in The Grothendieck Festschrift, Vol. II, Progr. Math. 87, Birkhäuser, Boston, 1990, 249–309.
  • [9] E. Grosse-Klönne, $p$-torsion coefficient systems for $\operatorname{SL}_{2}({\mathbb{Q}}_{p})$ and $\operatorname{GL}_{2}({\mathbb{Q}}_{p})$, J. Algebra 342 (2011), 97–110.
  • [10] E. Grosse-Klönne, Locally unitary principal series representations of $\operatorname{GL}_{d+1}(F)$, Münster J. Math. 7 (2014), 115–134.
  • [11] E. Grosse-Klönne, From pro-$p$ Iwahori–Hecke modules to $(\varphi,\Gamma)$-modules, II, preprint.
  • [12] R. Ollivier, Parabolic induction and Hecke modules in characteristic $p$ for $p$-adic $\operatorname{GL}_{n}$, Algebra Number Theory 4 (2010), 701–742.
  • [13] R. Ollivier and P. Schneider, Pro-$p$ Iwahori–Hecke algebras are Gorenstein, J. Inst. Math. Jussieu 13 (2014), 753–809.
  • [14] R. Ollivier and V. Sécherre, Modules universels de $\operatorname{GL}_{3}$ sur un corps $p$-adique en caractéristique $p$, preprint, arXiv:1105.2957v1 [math.RT].
  • [15] M. Vienney, Construction de $(\varphi,\Gamma)$-modules en caractéristique $p$, Ph.D. dissertation, École normale supérieure de Lyon, Lyon, France, 2012.
  • [16] M.-F. Vignéras, Pro-$p$-Iwahori Hecke ring and supersingular $\overline{\mathbb{F}}_{p}$-representations, Math. Ann. 331 (2005), 523–556. Erratum, Math. Ann. 333 (2005), 699–701.