Duke Mathematical Journal

Shells of twisted flag varieties and the Rost invariant

S. Garibaldi, V. Petrov, and N. Semenov

Full-text: Access denied (no subscription detected) We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We introduce two new general methods to compute the Chow motives of twisted flag varieties and settle a 20-year-old conjecture of Markus Rost about the Rost invariant for groups of type $\mathrm {E}_{7}$.

Article information

Source
Duke Math. J. Volume 165, Number 2 (2016), 285-339.

Dates
Received: 22 October 2013
Revised: 10 January 2015
First available in Project Euclid: 19 January 2016

Permanent link to this document
http://projecteuclid.org/euclid.dmj/1453211876

Digital Object Identifier
doi:10.1215/00127094-3165434

Mathematical Reviews number (MathSciNet)
MR3457675

Zentralblatt MATH identifier
1344.14004

Subjects
Primary: 20G15: Linear algebraic groups over arbitrary fields
Secondary: 14C15: (Equivariant) Chow groups and rings; motives 20G41: Exceptional groups

Keywords
linear algebraic groups twisted flag varieties Rost invariant Chow motives equivariant Chow groups

Citation

Garibaldi, S.; Petrov, V.; Semenov, N. Shells of twisted flag varieties and the Rost invariant. Duke Math. J. 165 (2016), no. 2, 285--339. doi:10.1215/00127094-3165434. http://projecteuclid.org/euclid.dmj/1453211876.


Export citation

References

  • [1] E. Bayer-Fluckiger and R. Parimala, Classical groups and the Hasse principle, Ann. of Math. (2) 147 (1998), 651–693.
  • [2] M. Brion, Equivariant Chow groups for torus actions, Transform Groups 2 (1997), 225–267.
  • [3] P. Brosnan, Steenrod operations in Chow theory, Trans. Amer. Math. Soc. 355 (2003), 1869–1903.
  • [4] P. Brosnan, On motivic decompositions arising from the method of Białynicki-Birula, Invent. Math. 161 (2005), 91–111.
  • [5] V. Chernousov, A remark on the (mod 5)-invariant of Serre for groups of type $\mathrm{E} _{8}$, Mat. Zametki 56 (1994), 116–121.
  • [6] V. Chernousov, The kernel of the Rost invariant, Serre’s Conjecture II, and the Hasse principle for quasi-split groups ${}^{3,6}D_{4}$, $E_{6}$, $E_{7}$, Math. Ann. 326 (2003), 297–330.
  • [7] V. Chernousov, “On the kernel of the Rost invariant for type $\mathrm{E} _{8}$ modulo 3” in Quadratic Forms, Linear Algebraic Groups, and Cohomology, Dev. Math. 18, Springer, New York, 2010, 199–214.
  • [8] V. Chernousov, S. Gille, and A. Merkurjev, Motivic decomposition of isotropic projective homogeneous varieties, Duke Math. J. 126 (2005), 137–159.
  • [9] V. Chernousov and A. Merkurjev, Motivic decomposition of projective homogeneous varieties and the Krull-Schmidt theorem, Transform. Groups 11 (2006), 371–386.
  • [10] C. De Clercq, A going down theorem for Grothendieck Chow motives, Q. J. Math. 64 (2013), 721–728.
  • [11] M. Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. Éc Norm. Supér. (4) 7 (1974), 53–88.
  • [12] M. Demazure and A. Grothendieck, Schémas en groupes, III: Structure des schemas en groupes reductifs, Lecture Notes in Math. 153, Springer, Berlin, 1970.
  • [13] H. Duan, Multiplicative rule of Schubert classes, Invent. Math. 159 (2005), 407–436.
  • [14] H. Duan and X. Zhao, A unified formula for Steenrod operations in flag manifolds, Compos. Math. 143 (2007), 257–270.
  • [15] R. Elman, N. Karpenko, and A. Merkurjev, The algebraic and geometric theory of quadratic forms, Amer. Math. Soc. Colloq. Publ. 56, Amer. Math. Soc., Providence, 2008.
  • [16] H. Flenner, L. O’Carroll, and W. Vogel, Joins and Intersections, Springer Monogr. Math., Springer, Berlin, 1999, 123–170.
  • [17] S. Fomin and A. Kirillov, “The Yang-Baxter equation, symmetric functions, and Schubert polynomials” in Formal Power Series and Algebraic Conbinatorics (Florence, 1993), Discrete Math. 153 (1996), 123–143.
  • [18] S. Garibaldi, The Rost invariant has trivial kernel for quasi-split groups of low rank, Comment. Math. Helv. 76 (2001), 684–711.
  • [19] S. Garibaldi, Cohomological invariants: Exceptional groups and spin groups, with an appendix by Detlev W. Hoffmann, Mem. Amer. Math. Soc. 200 (2009), no. 937.
  • [20] S. Garibaldi, “Orthogonal involutions on algebras of degree $16$ and the Killing form of $\mathrm{E} _{8}$,” with an appendix by K. Zainoulline, in Quadratic Forms—Algebra, Arithmetic, and Geometry, Contemp. Math. 493, Amer. Math. Soc., Providence, 2009, 131–162.
  • [21] S. Garibaldi and P. Gille, Algebraic groups with few subgroups, J. Lond. Math. Soc. (2) 80 (2009), 405–430.
  • [22] S. Garibaldi, A. Merkurjev, and J.-P. Serre, Cohomological invariants in Galois cohomology, Univ. Lecture Ser. 28, Amer. Math. Soc., Providence, 2003.
  • [23] S. Garibaldi and H. P. Petersson, Wild Pfister forms over Henselian fields, $K$-theory, and conic division algebras, J. Algebra 327 (2011), 386–465.
  • [24] S. Garibaldi and A. Quéguiner-Mathieu, Restricting the Rost invariant to the center, Algebra i Analiz 19 (2007), 52–73.
  • [25] S. Garibaldi and N. Semenov, Degree $5$ invariant of $\mathrm{E} _{8}$, Int. Math. Res. Not. IMRN (2010), no. 19, 3746–3762.
  • [26] P. Gille, Invariants cohomologiques de Rost en caractéristique positive, K-Theory 21 (2000), 57–100.
  • [27] P. Gille, Cohomologie galoisienne des groupes quasi-déployés sur des corps de dimension cohomologique $\le2$, Compos. Math. 125 (2001), 283–325.
  • [28] P. Gille and N. Semenov, Zero-cycles on projective varieties and the norm principle, Compos. Math. 146 (2010), 457–464.
  • [29] M. Goresky, R. Kottwitz, and R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), 25–83.
  • [30] V. Guillemin, T. Holm, and C. Zara, A GKM description of the equivariant cohomology ring of a homogeneous space, J. Algebraic Combin. 23 (2006), 21–41.
  • [31] M. Harada, A. Henriques, and T. Holm, Computation of generalized equivariant cohomologies of Kac-Moody flag varieties, Adv. Math. 197 (2005), 198–221.
  • [32] D. Harbater, J. Hartmann, and D. Krashen, Local-global principles for Galois cohomology, Comment. Math. Helv. 89 (2014), 215–253.
  • [33] B. Jacob, and A.R. Wadsworth, Division algebras over Henselian fields, J. Algebra 128 (1990), 126–179.
  • [34] C. Junkins, The $J$-invariant and Tits algebras for groups of inner type $\mathrm{E} _{6}$, Manuscripta Math. 140 (2013), 249–261.
  • [35] N. Karpenko, Grothendieck Chow motives of Severi-Brauer varieties, Algebra i Analiz 7 (1995), 196–213.
  • [36] N. Karpenko, Codimension $2$ cycles on Severi-Brauer varieties, K-Theory 13 (1998), 305–330.
  • [37] N. Karpenko, On the first Witt index of quadratic forms, Invent. Math. 153 (2003), 455–462.
  • [38] N. Karpenko, Holes in $I^{n}$, Ann. Sci. Éc. Norm. Supér. (4) 37 (2004), 973–1002.
  • [39] N. Karpenko, Hyperbolicity of orthogonal involutions, Doc. Math. Extra volume: Andrei A. Suslin’s Sixtieth Birthday (2010), 371–392.
  • [40] N. Karpenko, Upper motives of algebraic groups and incompressibility of Severi-Brauer varieties, J. Reine Angew. Math. 677 (2013), 179–198.
  • [41] N. Karpenko and A. Merkurjev, Canonical $p$-dimension of algebraic groups, Adv. Math. 205 (2006), 410–433.
  • [42] N. Karpenko and M. Zhykhovich, Isotropy of unitary involutions, Acta Math. 211 (2013), 227–253.
  • [43] K. Kato, “Galois cohomology of complete discrete valuation fields” in Algebraic K-theory: Part II (Oberwolfach, 1980), Lecture Notes in Math. 967, 215–238. Springer, Berlin, New York, 1982.
  • [44] K. Kato, A Hasse principle for two-dimensional global fields, with an appendix by J.-L. Colliot-Thélène, J. Reine Angew. Math. 366 (1986), 142–183.
  • [45] M.-A. Knus, A. Merkurjev, M. Rost, and J.-P. Tignol, The Book of Involutions, Amer. Math. Soc. Colloq. Pub. 44, Amer. Math. Soc., Providence, 1998.
  • [46] A. Knutson and T. Tao, Puzzles and (equivariant) cohomology of Grassmannians, Duke Math. J. 119 (2003), 221–260.
  • [47] B. Köck, Chow motif and higher Chow theory of $G/P$, Manuscripta Math. 70 (1991), 363–372.
  • [48] A. Kono and K. Ishitoya, “Squaring operations in mod $2$ cohomology of quotients of compact Lie groups by maximal tori” in Algebraic Topology (Barcelona, 1986), Lecture Notes in Math. 1298, Springer, Berlin, 1987, 192–206.
  • [49] T.-Y. Lam, Introduction to Quadratic Forms over Fields, Grad. Stud. Math. 67, Amer. Math. Soc., 2005.
  • [50] D. Leep, The $u$-invariant of $p$-adic function fields, J. Reine Angew. Math. 679 (2013), 65–73.
  • [51] Y. Manin, Correspondences, motives and monoidal transformations (in Russian), Mat. Sb. (N.S.) 77 (1968), 475–507.
  • [52] A. Merkurjev, I. Panin, and A. Wadsworth, Index reduction formulas for twisted flag varieties, I, K-Theory 10 (1996), 517–596.
  • [53] A. Merkurjev and J-P. Tignol, The multipliers of similitudes and the Brauer group of homogeneous varieties, J. Reine Angew. Math. 461 (1995), 13–47.
  • [54] A. Nenashev and K. Zainoulline, Oriented cohomology and motivic decompositions of relative cellular spaces, J. Pure Appl. Algebra 205 (2006), 323–340.
  • [55] S. Nikolenko, N. Semenov, and K. Zainoulline, Motivic decomposition of anisotropic varieties of type $\mathrm{F} _{4}$ into generalized Rost motives, J. K-Theory 3 (2009), 85–102.
  • [56] R. Parimala and R. Preeti, Hasse principle for classical groups over function fields of curves over number fields, J. Number Theory 101 (2003), 151–184.
  • [57] R. Parimala and V. Suresh, Isotropy of quadratic forms over function fields of $p$-adic curves, Publ. Math. Inst. Hautes Études Sci. Publ. 88 (1998), 129–150.
  • [58] R. Parimala and V. Suresh, The $u$-invariant of the function fields of $p$-adic curves, Ann. Math. (2) 172 (2010), 1391–1405.
  • [59] V. Petrov and N. Semenov, Generically split projective homogeneous varieties, Duke Math. J. 152 (2010), 155–173.
  • [60] V. Petrov and N. Semenov, Generically split projective homogeneous varieties, II, J. K-Theory 10 (2012), 1–8.
  • [61] V. Petrov, N. Semenov, and K. Zainoulline, $J$-invariant of linear algebraic groups, Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), 1023–1053.
  • [62] V. Petrov and A. Stavrova, Tits indices over semilocal rings, Transform. Groups 16 (2011), 193–217.
  • [63] E. Peyre, Galois cohomology in degree three and homogeneous varieties, K-Theory 15 (1998), 99–145.
  • [64] A. Quéguiner-Mathieu, N. Semenov, and K. Zainoulline, The $J$-invariant, Tits algebras and triality, J. Pure Appl. Algebra 216 (2012), 2614–2628.
  • [65] M. Rost, A (mod 3) invariant for exceptional Jordan algebras, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), 823–827.
  • [66] M. Rost, A descent property for Pfister forms, J. Ramanujan Math. Soc. 14 (1999), 55–63.
  • [67] M. Rost, On the basic correspondence of a splitting variety, preprint, http://www.math.uni-bielefeld.de/~rost.
  • [68] A. Schofield and M. van den Bergh, The index of a Brauer class on a Brauer-Severi variety, Trans. Amer. Math. Soc. 333 (1992), 729–739.
  • [69] N. Semenov, Motivic construction of cohomological invariants, to appear in Comment. Math. Helv., preprint, arXiv:0905.4384 [math.AG].
  • [70] T. A. Springer, Linear Algebraic Groups, 2nd ed., Progr. Math. 9 (1998), Birkhäuser, Boston.
  • [71] T. A. Springer, Some groups of type $\mathrm{E} _{7}$, Nagoya Math. J. 182 (2006), 259–284.
  • [72] J. Tits, “Classification of algebraic semisimple groups” in Algebraic Groups and Discontinuous Subgroups (Proc. Symp. Pure Math.), Amer. Math. Soc., Providence, 1966, 33–62.
  • [73] J. Tits, Représentations linéares irréductibles d’un groupe réductif sur un corps quelconque, J. Reine Angew. Math. 247 (1971), 196–220.
  • [74] J. Tits, Strongly inner anisotropic forms of simple algebraic groups, J. Algebra 131 (1990), 648–677.
  • [75] J. Tits, Sur les degrés des extensions de corps déployant les groupes algébriques simples, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), 1131–1138.
  • [76] J. Tymoczko, Divided difference operators for partial flag varieties, preprint, http://arxiv.org/abs/0912.2545.
  • [77] A. Vishik, “Motives of quadrics with applications to the theory of quadratic forms” in Geometric Methods in the Algebraic Theory of Quadratic Forms, Lecture Notes in Math. 1835, Springer, Berlin, 2003, 25–101.
  • [78] A. Vishik, “Fields of $u$-invariant $2^{r}+1$” in Algebra, Arithmetic and Geometry: In Honor of Yu. I. Manin, Vol. II, Progr. Math. 270, Birkhäuser, Boston, 2009, 661–685.
  • [79] A. Vishik, Excellent connections in the motives of quadrics, Ann. Sci. Éc. Norm. Supér. (4) 44 (2010) 183–195.
  • [80] A. Vishik and K. Zainoulline, Motivic splitting lemma, Doc. Math. 13 (2008), 81–96.