Duke Mathematical Journal

The geometry of Newton strata in the reduction modulo p of Shimura varieties of PEL type

Paul Hamacher

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text


In this paper we study the Newton stratification on the reduction of Shimura varieties of PEL type with hyperspecial level structure. Our main result is a formula for the dimension of Newton strata and the description of their closure, where the dimension formula was conjectured by Chai. As a key ingredient of its proof we calculate the dimension of some Rapoport–Zink spaces. Our result yields a dimension formula, which was conjectured by Rapoport (up to a minor correction).

As an interesting application to deformation theory, we determine the dimension and closure of Newton strata on the algebraization of the deformation space of a Barsotti–Tate group with (P)EL structure. Our result on the closure of a Newton stratum generalizes conjectures of Grothendieck and Koblitz.

Article information

Duke Math. J. Volume 164, Number 15 (2015), 2809-2895.

Received: 20 December 2013
Revised: 6 November 2014
First available in Project Euclid: 1 December 2015

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 14G35: Modular and Shimura varieties [See also 11F41, 11F46, 11G18] 14L05: Formal groups, $p$-divisible groups [See also 55N22]
Secondary: 20G25: Linear algebraic groups over local fields and their integers

Newton stratification Shimura variety Rapoport–Zink space


Hamacher, Paul. The geometry of Newton strata in the reduction modulo $p$ of Shimura varieties of PEL type. Duke Math. J. 164 (2015), no. 15, 2809--2895. doi:10.1215/00127094-3328137. https://projecteuclid.org/euclid.dmj/1448980435

Export citation


  • [1] N. Bourbaki, Éléments de mathématique, fasc. 34: Groupes et algèbres de Lie, chapitre 4: Groupes de Coxeter et systèmes de Tits; chapitre 5: Groupes engendrés par des réflexions; chapitre 6: Systèmes de racines; Actualités Sci. Indust. 1337, Hermann, Paris, 1968.
  • [2] C.-L. Chai, Newton polygons as lattice points, Amer. J. Math. 122 (2000), 967–990.
  • [3] M. Chen, M. Kisin, and E. Viehmann, Connected components of affine Deligne-Lusztig varieties in mixed characteristic, to appear in Compos. Math., preprint, arXiv:1307.3845v2 [math.AG].
  • [4] B. Deng, J. Du, B. Parshall, and J. Wang, Finite Dimensional Algebras and Quantum Groups, Math. Surv. Monogr. 150, Amer. Math. Soc., Providence, 2008.
  • [5] L. Fargues, Cohomologie des espaces de modules de groupes $p$-divisibles et correspondances de Langlands locales, Astérisque 291 (2004), 1–199.
  • [6] Q. R. Gashi, On a conjecture of Kottwitz and Rapoport, Ann. Sci. École Norm. Sup. 43 (2010), 1017–1038.
  • [7] U. Görtz, T. J. Haines, R. E. Kottwitz, and D. C. Reuman, Dimensions of some affine Deligne-Lusztig varieties, Ann. Sci. École Norm. Sup. 39 (2006), 467–511.
  • [8] U. Görtz, T. J. Haines, R. E. Kottwitz, and D. C. Reuman, Affine Deligne-Lusztig varieties in affine flag varieties, Compos. Math. 146 (2010), 1339–1382.
  • [9] P. Gille and P. Polo, eds., Schémas en groupes: Structure des schémas en groupes réductifs, Séminaire de Géométrie Algébrique du Bois Marie 1962–1964 (SGA 3), Doc. Math. (Paris) 8, Soc. Math. France, Montrouge, 2011.
  • [10] A. Grothendieck, Éléments de géométrie algébrique, IV: Étude locale des schémas et des morphismes de schémas, III, Inst. Hautes Études Sci. Publ. Math. 28 (1966), 255.
  • [11] A. Grothendieck, Groupes de Barsotti-Tate et cristaux de Dieudonné, in Séminaire de Math. Supér. 45 (Été, 1970). Les Presses de l’Université de Montréal, Montreal, Quebec, 1974.
  • [12] P. Hamacher, The dimension of affine Deligne-Lusztig varieties in the affine Grassmannian of unramified groups, preprint, arXiv:1312.0486 [math. AG].
  • [13] X. He, Minimal length elements in conjugacy classes of extended affine Weyl group, preprint, arXiv:1004.4040 [math. RT].
  • [14] L. Illusie, “Déformations de groupes de Barsotti-Tate (d’après A. Grothendieck)” in Seminar on Arithmetic Bundles: The Mordell Conjecture (Paris, 1983/84), Astérisque 127 (1985), 151–198.
  • [15] M.-A. Knus, Quadratic and Hermitian forms over rings, Grund. Math. Wiss. 294, Springer, Berlin, 1991.
  • [16] N. Koblitz, $p$-adic variation of the zeta-function over families of varieties defined over finite fields, Compos. Math. 31 (1975), 119–218.
  • [17] R. E. Kottwitz, Isocrystals with additional structure, Compos. Math. 56 (1985), 201–220.
  • [18] R. E. Kottwitz, Points on some Shimura varieties over finite fields, J. Amer. Math. Soc. 5 (1992), 373–444.
  • [19] R. E. Kottwitz, On the Hodge-Newton decomposition for split groups, Int. Math. Res. Not. IMRN 2003, no. 26, 1433–1447.
  • [20] R. E. Kottwitz, Dimensions of Newton strata in the adjoint quotient of reductive groups, Pure Appl. Math. Q. 2 (2006), no. 3, part 1, 817–836.
  • [21] M. Kreidl, On $p$-adic loop groups and Grassmannians, Math. Z. 276 (2014), 859–888.
  • [22] S. Lang and A. Weil, Number of points of varieties in finite fields, Amer. J. Math. 76 (1954), 819–827.
  • [23] E. Mantovan, On certain unitary group Shimura varieties, Astérisque 291 (2004), 201–331.
  • [24] E. Mantovan, On the cohomology of certain PEL-type Shimura varieties, Duke Math. J. 129 (2005), 573–610.
  • [25] E. Mantovan, On non-basic Rapoport-Zink spaces, Ann. Sci. École Norm. Sup. (4) 41 (2008), 671–716.
  • [26] W. Messing, The Crystals Associated to Barsotti-Tate Groups: With Applications to Abelian Schemes, Lecture Notes in Math. 264, Springer, Berlin, 1972.
  • [27] F. Oort, Newton polygons and formal groups: Conjectures by Manin and Grothendieck, Ann. of Math. (2) 152 (2000), 183–206.
  • [28] F. Oort, Foliations in moduli spaces of abelian varieties, J. Amer. Math. Soc. 17 (2004), 267–296.
  • [29] F. Oort and T. Zink, Families of $p$-divisible groups with constant Newton polygon, Doc. Math. 7 (2002), 183–201.
  • [30] M. Rapoport, A guide to the reduction modulo $p$ of Shimura varieties, Astérisque 298 (2005), 271–318.
  • [31] M. Rapoport and M. Richartz, On the classification and specialization of $F$-isocrystals with additional structure, Compos. Math. 103 (1996), 153–181.
  • [32] M. Rapoport and E. Viehmann, Towards a theory of local Shimura varieties, Münster J. Math. 7 (2014), 273–326.
  • [33] M. Rapoport and Th. Zink, Period Spaces for $p$-Divisible Groups, Ann. Math. Stud. 141, Princeton Univ. Press, Princeton, 1996.
  • [34] E. Viehmann, The dimension of some affine Deligne-Lusztig varieties, Ann. Sci. École Norm. Sup. (4) 39 (2006), 513–526.
  • [35] E. Viehmann, Moduli spaces of $p$-divisible groups, J. Algebraic Geom. 17 (2008), 341–374.
  • [36] E. Viehmann, The global structure of moduli spaces of polarized $p$-divisible groups, Doc. Math. 13 (2008), 825–852.
  • [37] E. Viehmann, Newton strata in the loop group of a reductive group, Amer. J. Math. 135 (2013), 499–518.
  • [38] E. Viehmann, Truncations of level 1 of elements in the loop group of a reductive group, Ann. of Math. (2) 179 (2014), 1009–1040.
  • [39] E. Viehmann, On the Newton stratification, in preparation.
  • [40] E. Viehmann and T. Wedhorn, Ekedahl–Oort and Newton strata for Shimura varieties of PEL type, Math. Ann. 356 (2013), 1493–1550.
  • [41] T. Wedhorn, Ordinariness in good reductions of Shimura varieties of PEL-type, Ann. Sci. École Norm. Sup. (4) 32 (1999), 575–618.
  • [42] Y. Yang, An improvement of de Jong-Oort’s purity theorem, Münster J. Math. 4 (2011), 129–140.