Duke Mathematical Journal

Flops and the S-duality conjecture

Yukinobu Toda

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We prove the transformation formula of Donaldson–Thomas (DT) invariants counting two-dimensional torsion sheaves on Calabi–Yau 3-folds under flops. The error term is described by the Dedekind eta function and the Jacobi theta function, and our result gives evidence of a 3-fold version of the Vafa–Witten S-duality conjecture. As an application, we prove a blow-up formula of DT-type invariants on the total spaces of canonical line bundles on smooth projective surfaces. It gives an analogue of the similar blow-up formula in the original S-duality conjecture by Yoshioka, Li and Qin, and Göttsche.

Article information

Source
Duke Math. J., Volume 164, Number 12 (2015), 2293-2339.

Dates
Received: 20 December 2013
Revised: 15 October 2014
First available in Project Euclid: 16 September 2015

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1442364464

Digital Object Identifier
doi:10.1215/00127094-3129595

Mathematical Reviews number (MathSciNet)
MR3397387

Zentralblatt MATH identifier
1331.14055

Subjects
Primary: 14N35: Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants [See also 53D45]
Secondary: 18E30: Derived categories, triangulated categories

Keywords
Donaldson–Thomas invariants flops derived category of coherent sheaves

Citation

Toda, Yukinobu. Flops and the S-duality conjecture. Duke Math. J. 164 (2015), no. 12, 2293--2339. doi:10.1215/00127094-3129595. https://projecteuclid.org/euclid.dmj/1442364464


Export citation

References

  • [1] K. Behrend, Donaldson-Thomas invariants via microlocal geometry, Ann. of Math. 170 (2009), 1307–1338.
  • [2] T. Bridgeland, Flops and derived categories, Invent. Math. 147 (2002), 613–632.
  • [3] T. Bridgeland, Stability conditions on triangulated categories, Ann. of Math. 166 (2007), 317–345.
  • [4] T. Bridgeland, Hall algebras and curve-counting invariants, J. Amer. Math. Soc. 24 (2011), 969–998.
  • [5] J. Bryan, S. Katz, and N. C. Leung, Multiple covers and integrality conjecture for rational curves on Calabi-Yau threefolds, J. Algebraic Geom. 10 (2001), 549–568.
  • [6] J. Calabrese, Donaldson-Thomas invariants on flops, preprint, arXiv:1111.1670v5 [math.AG].
  • [7] A. Căldăraru, The Mukai pairing, II: The Hochschild-Kostant-Rosenberg isomorphism, Adv. in Math. 194 (2005), 34–66.
  • [8] J.-C. Chen, Flops and equivalences of derived categories for three-folds with only Gorenstein singularities, J. Differential Geom. 61 (2002), 227–261.
  • [9] F. Denef and G. Moore, Split states, entropy enigmas, holes and halos, J. High Energy Phys. 11 (2011), 129.
  • [10] W. Donovan and M. Wemyss, Noncommutative deformations and flops, preprint, arXiv:1309.0698v3 [math.AG].
  • [11] M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progr. in Math. 55, Birkhäuser, Boston, 1985.
  • [12] W. Fulton, Intersection Theory, 2nd ed., Ergeb. Math. Grenzgeb. 3, Folge 2, Springer, Berlin.
  • [13] D. Gaiotto, A. Strominger, and X. Yin, The M5-brane elliptic genus: Modularity and BPS states, J. High Energy Phys. 8 (2007), 070.
  • [14] D. Gaiotto and X. Yin, Examples of M5-brane elliptic genera, J. High Energy Phys. 11 (2007), 004.
  • [15] A. Gholampour and A. Sheshmani, Donaldson-Thomas invariants of 2-dimensional sheaves inside threefolds and modular forms, preprint, arXiv:1309.0050v2 [math.AG].
  • [16] A. Gholampour and A. Sheshmani, Generalized Donaldson-Thomas invariants of 2-dimensional sheaves on local $\mathbb{P}^{2}$, preprint, arXiv:1309.0056v3 [math.AG].
  • [17] A. Gholampour, A. Sheshmani, and R. P. Thomas, Counting curves on surfaces in Calabi-Yau 3-folds, Math. Ann. 360 (2014), 67–78.
  • [18] L. Göttsche, Theta functions and Hodge numbers of moduli spaces of sheaves on rational surfaces, Comm. Math. Phys. 206 (1999), 105–136.
  • [19] L. Göttsche, Invariants of moduli spaces and modular forms, Rend. Istit. Mat. Univ. Trieste 41 (2009), 55–76.
  • [20] D. Happel, I. Reiten, and S. O. Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996), no. 575.
  • [21] J. Hu and W. P. Li, The Donaldson-Thomas invariants under blowups and flops, J. Differential Geom. 90 (2012), 391–411.
  • [22] D. Huybrechts and M. Lehn, “Geometry of moduli spaces of sheaves” in Aspects in Mathematics, E31, Vieweg, Braunschweig, 1997.
  • [23] D. Joyce, Configurations in abelian categories, II: Ringel-Hall algebras, Adv. Math. 210 (2007), 635–706.
  • [24] D. Joyce, Configurations in abelian categories, IV: Invariants and changing stability conditions, Adv. in Math 217 (2008), 125–204.
  • [25] D. Joyce and Y. Song, A theory of generalized Donaldson-Thomas invariants, Mem. Amer. Math. Soc. 217, Amer. Math. Soc., Providence, 2012.
  • [26] S. Katz, Genus zero Gopakumar-Vafa invariants of contractible curves, J. Differential Geom. 79 (2008), 185–195.
  • [27] S. Katz and D. R. Morrison, Gorenstein threefold singularities with small resolutions via invariant theory for Weyl groups, J. Algebraic Geom. 1 (1992), 449–530.
  • [28] Y. Kawamata, Flops connect minimal models, Publ. Res. Inst. Math. Sci. 44 (2008), 419–423.
  • [29] M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, preprint, arXiv:0811.2435v1 [math.AG].
  • [30] A. Langer, Semistable sheaves in positive characteristic, Ann. of Math. 159 (2004), 251–276.
  • [31] A. Langer, Moduli spaces of sheaves and principal $G$-bundles, Proc. Sympos. Pure Math. 80 (2009), 273–308.
  • [32] W. P. Li and Z. Qin, On blowup formulae for the $S$-duality conjecture of Vafa and Witten, Invent. Math. 136 (1999), 451–482.
  • [33] M. Lieblich, Moduli of complexes on a proper morphism, J. Algebraic Geom. 15 (2006), 175–206.
  • [34] K. Nagao, Donaldson–Thomas theory and cluster algebras, Duke Math. J. 162 (2013), 1313–1367.
  • [35] K. Nagao and H. Nakajima, Counting invariant of perverse coherent sheaves and its wall-crossing, Int. Math. Res. Not. IMRN (2011), no. 17, 3885–3938.
  • [36] T. Nishinaka, Multiple D4-D2-D0 on the conifold and wall-crossing with the flop, J. High Energy Phys. 6 (2011), 065.
  • [37] T. Nishinaka and S. Yamaguchi, Wall-crossing of D4-D2-D0 and flop of the conifold, J. High Energy Phys. 9 (2010), 026.
  • [38] H. Ooguri, A. Strominger, and C. Vafa, Black hole attractors and the topological string, Phys. Rev. D 70 (2004), no. 10, 106007.
  • [39] M. Reid, “Minimal models of canonical 3-foldings” in Algebraic Varieties and Analytic Varieties (S. Iitaka, ed.), Adv. Stud. Pure Math., Kinokuniya, Tokyo, and North-Holland, Amsterdam 1, 131–180.
  • [40] R. P. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds and bundles on ${K3}$-fibrations, J. Differential Geom. 54 (2000), 367–438.
  • [41] Y. Toda, Birational Calabi-Yau 3-folds and BPS state counting, Comm. Number Theory and Physics 2 (2008), 63–112.
  • [42] Y. Toda, Moduli stacks and invariants of semistable objects on K3 surfaces, Adv. in Math. 217 (2008), 2736–2781.
  • [43] Y. Toda, Curve counting theories via stable objects, I: DT/PT correspondence, J. Amer. Math. Soc. 23 (2010), 1119–1157.
  • [44] Y. Toda, Bogomolov-Gieseker type inequality and counting invariants, J. Topology 6 (2013), 217–250.
  • [45] Y. Toda, Curve counting theories via stable objects, II: DT/ncDT flop formula, J. Reine Angew. Math. 675 (2013), 1–51.
  • [46] Y. Toda, Stability conditions and extremal contractions, Math. Ann. 357 (2013), 631–685.
  • [47] Y. Toda, Multiple cover formula of generalized DT invariants, I: Parabolic stable pairs, Adv. Math. 257 (2014), 476–526.
  • [48] Y. Toda, Multiple cover formula of generalized DT invariants, II: Jacobian localizations, preprint, arXiv:1108.4993v1 [math.AG].
  • [49] Y. Toda, S-duality for surfaces with $A_{n}$-type singularities, preprint, arXiv:1312.2300v2 [math.AG].
  • [50] C. Vafa and E. Witten, A strong coupling test of S-duality, Nucl. Phys. B 431 (1994), 3–7.
  • [51] M. Van den Bergh, Three-dimensional flops and noncommutative rings, Duke Math. J. 122 (2004), 423–455.
  • [52] K. Yoshioka, Chamber structure of polarizations and the moduli space of rational elliptic surfaces, Int. J. Math. 7 (1996), 411–431.