Duke Mathematical Journal

When the sieve works

Andrew Granville, Dimitris Koukoulopoulos, and Kaisa Matomäki

Full-text: Access denied (no subscription detected)

We're sorry, but we are unable to provide you with the full text of this article because we are not able to identify you as a subscriber. If you have a personal subscription to this journal, then please login. If you are already logged in, then you may need to update your profile to register your subscription. Read more about accessing full-text

Abstract

We are interested in classifying those sets of primes P such that when we sieve out the integers up to x by the primes in P c we are left with roughly the expected number of unsieved integers. In particular, we obtain the first general results for sieving an interval of length x with primes including some in ( x , x ] , using methods motivated by additive combinatorics.

Article information

Source
Duke Math. J. Volume 164, Number 10 (2015), 1935-1969.

Dates
Received: 20 December 2013
Revised: 9 September 2014
First available in Project Euclid: 14 July 2015

Permanent link to this document
https://projecteuclid.org/euclid.dmj/1436909415

Digital Object Identifier
doi:10.1215/00127094-3120891

Mathematical Reviews number (MathSciNet)
MR3369306

Zentralblatt MATH identifier
1326.11055

Subjects
Primary: 11N35: Sieves
Secondary: 11B30: Arithmetic combinatorics; higher degree uniformity

Keywords
sieve methods additive combinatorics continuous postage stamp problem Balog–Szemeredi–Gowers theorem Ruzsa–Chang theorem

Citation

Granville, Andrew; Koukoulopoulos, Dimitris; Matomäki, Kaisa. When the sieve works. Duke Math. J. 164 (2015), no. 10, 1935--1969. doi:10.1215/00127094-3120891. https://projecteuclid.org/euclid.dmj/1436909415


Export citation

References

  • [1] D. Bleichenbacher, The continuous postage stamp problem, unpublished manuscript.
  • [2] K. Ford, Sieve methods class notes, part 4, preprint, http://www.math.uiuc.edu/~ford/Sieve_methods_notes_part4.pdf (accessed 19 March 2015).
  • [3] J. B. Friedlander, Integers free from large and small primes, Proc. London Math. Soc. 33 (1976), 565–576.
  • [4] J. B. Friedlander and H. Iwaniec, Opera de Cribro, Amer. Math Soc. Colloqium Pub. 57, Amer. Math. Soc., Providence, 2010.
  • [5] A. Granville and K. Soundararajan, The number of unsieved integers up to $x$, Acta Arith. 115 (2004), 305–328.
  • [6] R. R. Hall, Halving an estimate obtained from Selberg’s upper bound method, Acta Arith. 25 (1974), 347–351.
  • [7] A. Hildebrand, On the number of positive integers $\leq x$ and free of prime factors $>y$, J. Number Theory 22 (1986), 289–307.
  • [8] A. Hildebrand, Quantitative mean value theorems for nonnegative multiplicative functions, II, Acta Arith. 48 (1987), 209–260.
  • [9] H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Colloqium Pub. 53, Amer. Math. Soc., Providence, 2004.
  • [10] H. W. Lenstra jr. and C. Pomerance, Primality testing with Gaussian periods, preprint, 2005, http://www.math.dartmouth.edu/~carlp/aks041411.pdf.
  • [11] V. F. Lev, Restricted set addition in groups, III: Integer sumsets with generic restrictions, Period. Math. Hungar. 42 (2001), 89–98.
  • [12] K. Matomäki, Real zeros of holomorphic Hecke cusp forms and sieving short intervals, preprint, to appear in J. Eur. Math. Soc., http://users.utu.fi/ksmato/papers/RealZerosCuspForms.pdf.
  • [13] T. Tao and V. H. Vu, Additive Combinatorics, Cambridge Stud. in Adv. Math. 105, Cambridge Univ. Press, Cambridge, 2006.